

Bi-Annual Construction Monitoring Report - December 2021 – June 2022

SMWSTCTP-AFJ-1NL-EN-RPT-000016 Revision 00 Sydney Metro West – Central Tunnelling Package

DOCUMENT APPROVAL

	Prepared By	Reviewed By	Approved By
Name:	Oliver Gilroy-Sarkies	Jared Lipton	Jared Lipton
Position:	Environmental Graduate	Environmental Manager	Environmental Manager
Date:	12/08/2022	15/08/2022	15/08/2022

REVISION HISTORY

Rev:	Date:	Pages:	By:	Description:
А	05/08/2022	All	OGS	For internal review
00	12/08/2022	All	OGS	For submission to Sydney Metro

Table of Contents

DOCUMENT APPROVAL	1
REVISION HISTORY	1
COMPLIANCE MATRIX	1
1. INTRODUCTION	1
2. NOISE AND VIBRATION	2
2.1 MONITORING LOCATIONS	2
2.1.1 ATTENDED MONITORING	2
2.1.2 UNATTENDED MONITORING	2
2.2 NOISE AND VIBRATION MONITORING RESULTS	2
2.2.3 ATTENDED MONITORING	2
2.2.4 UNATTENDED MONITORING	2
2.3 CONCLUSIONS	
3. SURFACE WATER	
3.1 MONITORING SITES	4
3.2 SURFACE WATER QUALITY RESULTS	5
3.3 CONCLUSIONS	-
4. GROUNDWATER	7
4.1 MONITORING LOCATIONS	
4.2 GROUNDWATER QUALITY RESULTS	
4.2.1 GROUNDWATER LEVELS	
4.3 CONCLUSIONS	8
APPENDIX A - ATTENDED NOISE AND VIBRATION MONITORING LOCATIONS	10
APPENDIX B - UNATTENDED NOISE AND VIBRATION MONITORING LOCATIONS	14
APPENDIX C - ATTENDED NOISE MONITORING SUMMARY	15
APPENDIX D - UNATTENDED VIBRATION MONITORING EXCEEDANCES	16
APPENDIX E - SURFACE WATER MONITORING LOCATIONS	17
APPENDIX F - SURFACE WATER QUALITY RESULTS	20
APPENDIX G - GROUNDWATER MONITORING LOCATIONS	
APPENDIX H - GROUNDWATER MONITORING DATA	22
APPENDIX I HISTORICAL GROUNDWATER GAUGING DATA	23

COMPLIANCE MATRIX

Condition Reference	Condition Requirement	Reference
C14	The following Construction Monitoring Programs must be prepared in consultation with the relevant government agencies identified for each to compare actual performance of construction of Stage 1 of the CSSI against the performance predicted in the documents listed in Condition A1 of this schedule or in the CEMP: (a) Noise and vibration Monitoring Program; consult with EPA, SOPA (in respect of Sydney Olympic Park), Place Management NSW (in respect of The Bays) and Relevant Council(s) (c) Surface water quality Monitoring program; consult with DPIE Water, Relevant Council(s) and Sydney Water (if any Sydney Water assets are impacted) (d) Groundwater Monitoring Program; consult with DPE Water, Relevant Council(s) and Sydney Water (if any Sydney Water assets are impacted)	 (a) Section 3 of the Noise and Vibration Monitoring Program (SMWSTCTP- AFJ-1NL-NV-PLN- 000001) Section 3 of the Surface Water Monitoring Program (SMWSTCTP- AFJ-1NL-PE-PRG- 000001) Section 3 of the Groundwater Monitoring Program (SMWSTCTP- AFJ-1NL-PE-PLN- 000006)
C23	The results of the Construction Monitoring Programs must be submitted to the Planning Secretary, ER and relevant regulatory agencies, for information in the form of a Construction Monitoring Report at the frequency identified in the relevant Construction Monitoring Program.	This Report

1. INTRODUCTION

This bi-annual construction monitoring report (B-ACMR) has been prepared to address Condition of Approval (CoA) C23 of the planning approval. This B-ACMR presents monitoring data for the reporting period for all works undertaken on the Central Tunnelling Package (CTP) from **20 December 2021 to 20 June 2022**. This report will highlight the results from the construction phase of the monitoring programs and compare these results against established baseline data where available. Please note this report will only highlight exceedances and additional data may be requested.

In accordance with each relevant Construction Monitoring Program, monitoring data will be made available to relevant authorities within 40 business days of the monitoring period ending.

2. NOISE AND VIBRATION

The purpose of the Noise and Vibration Monitoring Program (NVMP) is to identify potential impacts of the Central Tunnelling Package (CTP) Works for noise and vibration within the local environments surrounding the construction sites. The data presented in the bi-annual construction monitoring report (this report) is submitted in accordance with Condition C23 of the Project Planning Approval, which requires reporting of the results of the CTP Works to the to the Planning Secretary, ER and relevant regulatory agencies.

This report details the results during the construction phase of the NVMP. This will investigate the baseline noise and vibration impacts against operational monitoring data undertaken during the specified stage of the project.

2.1 MONITORING LOCATIONS

2.1.1 ATTENDED MONITORING

Attended airborne noise monitoring was completed using a handheld sound level meter fixed to a tripod. Noise monitoring was completed as required, generally for verification purposes at the location of Out of Hours Works (OOHW). Attended monitoring locations where LAeq exceedances were detected are provided in Appendix A.

2.1.2 UNATTENDED MONITORING

Unattended (real time) airborne noise and vibration monitoring has been completed with noise loggers and vibration meters deployed across all CTP construction sites to obtain noise and vibration data over longer periods to satisfy CoA C16(c). The unattended monitoring locations are identified in Appendix B.

2.2 NOISE AND VIBRATION MONITORING RESULTS

2.2.3 ATTENDED MONITORING

There was only one attended vibration monitoring event recorded during the reporting period at Five Dock, however monitoring demonstrated that vibration outcomes were consistent with impacts assessed within the Detailed Noise and Vibration Impact Statement (DNVIS).

There were a total of eight attending noise monitoring events conducted during the monitoring period. A summary of these is provided within Appendix C. Of these events, four OOHW works recorded LAeq exceedances when compared to OOHW Permit modelling. The greatest exceedance was identified at The Bays site on 15/03/2022, which registered a measured LAeq of 61 dB compared to the model predicted 48 dB. Within the monitoring report (21028-20220315-0) it was noted that all activities were inaudible at the most affected residential locations during the monitoring period. Furthermore, the report concluded that it is expected that the activities, as measured, are NML compliant at the representative receiver locations.

2.2.4 UNATTENDED MONITORING

There were a total of ten vibration related exceedances recorded during the reporting period, summarised in Appendix D. The highest recorded exceedance was experienced at the Burwood North, West site on 28/04/2022. This exceedance was investigated and determined to be a result a 20T vibratory roller clipping the concrete hardstand, resulting in a Peak Particle Velocity (PPV) of 13mm/s. The Burwood site team were later toolboxed in response to this exceedance regarding the use of static rolling as opposed to vibratory rolling. There was a spike in the PPV at the St Albans Church during the demolition period of 6.2mm/s but this did not exceed the 7.5mm/s limit of the building.

2.3 CONCLUSIONS

Noise and vibration monitoring undertaken on the CTP Project during the reporting period was in accordance with the NVMP. Attended monitoring events were conducted in line with the AFJV OOHW

protocol. Four attended noise monitoring events resulted in LAeq exceedances against permit modelling however, heightened ambient noise levels generally appear to be the catalyst for these exceedances. Conversely, attended vibration monitoring did not result in any measured exceedances. Unattended vibration monitoring recorded ten PPV exceedances. As a management response to these incidents, the site teams were toolboxed to ensure construction methodology considers vibration impact and mitigation strategies where appropriate.

Noise and vibration monitoring will continue in accordance with the NVMP.

3. SURFACE WATER

The purpose of the Surface Water Monitoring Program (SWMP) is to identify potential impacts of the Central Tunnelling Package (CTP) Works on water quality within local receiving waters. The data presented in the bi-annual construction monitoring report (this report) is submitted in accordance with Condition C23 of the Project Planning Approval, which requires reporting of the results of the CTP Works to the to the Planning Secretary, ER and relevant regulatory agencies.

This report details the results during the construction phase of the SWMP. This will investigate the baseline water quality against operational monitoring data undertaken during the specified stage of the project.

3.1 MONITORING SITES

During construction surface water quality monitoring was undertaken monthly, both in dry weather and wet weather conditions in accordance with the SWMP. Table 3-A: SURFACE WATER MONITORING LOCATIONS provides a summary of the monitoring locations and a monitoring location map is included in Appendix E. Surface water quality was measured at eight locations during the reporting period. Monitoring locations were identified as being representative of the surrounding receiving waters and sufficient to identify potential project impacts should there be any quality exceedances. Monitoring on the CTP project for the reporting period was completed at the frequency depicted in Figure 3-1: SURFACE WATER MONITORING CALENDAR. There were a total of six monthly monitoring events (two of which formed part of the pre-construction monitoring rounds) as well as three post-rainfall event monitoring rounds.

Name	Waterway	Nearest Project Site	Location	Distance From Site to Creek
WB-D/S	White Bay	The Bays	-33.866245°S, 151.180450° E	Immediately adjacent to water
DC-U/S	Dobroyd Canal / Iron Cove Creek	Five Dock	-33.873828 ° S, 151.128243° E	600m
DC-D/S	Dobroyd Canal / Iron Cove Creek	Five Dock	-33.870604° S, 151.141474° E	600m
SLP-D/S	St Lukes Park Canal	Burwood North	-33.861571°S , 151.113347° E	230m
PC-U/S	Powells Creek	North Strathfield	-33.862145°S, 151.086294° E	350m
PC-D/S	Powells Creek	North Strathfield	-33.852589°S, 151.082359° E	350m
SC-D/S	Saleyards Creek	Sydney Olympic Park	-33.852282°S, 151.081934° E	1km
HC-D/S	Haslams Creek	Sydney Olympic Park	-33.834564°S, 151.075772° E	1km

TABLE 3-A: SURFACE WATER MONITORING LOCATIONS

LEGEND

Pre-ConstructionMonitoring

Post-rainfall Monitoring

Monthly Monitoring

2022

		Janu	Jary	1'22	2			F	ebr	uar	y '2	2				Ma	rch	'22		
Su	M	Tu	W	Th	F	Sa	Su	М	Tu	W	Th	F	Sa	Su	М	Tu	W	Th	F	Sa
						1			1	2	З	4	5			1	2	З	4	5
2	3	4	5	6	7	8	6	7	8	9	10	11	12	6	7	8	9	10	11	12
9	10	11	12	13	14	15	13	14	15	16	17	18	19	13	14	15	16	17	18	19
16	17	18	19	20	21	22	20	21	22	23	24	25	26	20	21	22	23	24	25	26
23	24	25	26	27	28	29	27	28	(27	28	29	30	31		
30	31																			
		Ар	ril '	22					M	ay '	22					Ju	ne '	22		
Su	М	Tu	W	Th	F	Sa	Su	М	Tu	W	Th	F	Sa	Su	М	Tu	W	Th	F	Sa
					1	2	1	2	3	4	5	6	7				1	2	З	4
3	4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11
10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18
17	18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25
24	25	26	27	28	29	30	29	30	31					26	27	28	29	30		

FIGURE 3-1: SURFACE WATER MONITORING CALENDAR

3.2 SURFACE WATER QUALITY RESULTS

When comparing the pre-construction monitoring results in 20 to the preliminary trigger values identified within Table 3-B, there are a large range of discrepancies. Exceedances were identified within all measurable water quality characteristics, at every monitoring location. This is especially prominent within the baseline construction monitoring rounds. The existing condition of the waterways is generally poor, with all waterways situated in highly urbanised settings. This results in natural variability in water quality at the receiving waters due to the multiple potential urban runoff sources in the catchment.

There was no detailed pre-project baseline surface water monitoring data identified in the Sydney Metro West EIS documentation. This presents a challenge when establishing accurate trigger values for receiving water quality exceedances. Therefore, the trigger values will be amended from preliminary values to site specific values extrapolated following the completion of the first reporting period since construction commencement.

TABLE 3-B: PELIMINARY TRIGGER VALUES TO MAINTAIN WATER QUALITY OBJECTIVES

Receiving watercourse type (WQO)	Turbidity	рН	Dissolved Oxygen	Oil and grease	Electrical conductivity/Salinity
Aquatic Ecosystem (Estuaries)	0.5–10 NTU	7.0-8.5	80-110%	None visible on surface	Lowland rivers: 125– 2200 µS/cm

Water quality would also have undoubtedly been affected by the unprecedented rainfall experienced during the reporting period. Figure 3-1 depicts the total monthly rainfall for the monitoring period against the long-term average for the same reporting period. During this reporting period, significantly higher than average rainfall was recorded in March (550.6mm) compared with the historic average (207.9mm). Higher than average rainfall was also recorded in the months of February, April and May.

January recorded comparable to mean rainfall whilst June recorded less than mean rainfall. Overall rainfall volumes for the monitoring period were above the historic mean with a total of 1,230.8mm of rain received, compared to a historic mean rainfall volume of 736.6mm, representing a 167% increase.

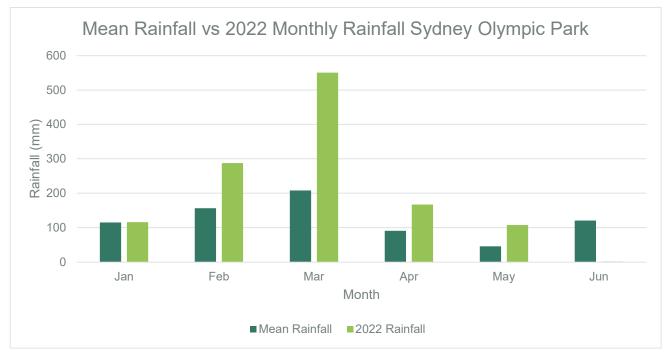


FIGURE 3-2: MEAN RAINFALL VS 2022 MONTHLY RAINFALL DATA - SYDNEY OLYMPIC PARK (BOM, 2022)

3.3 CONCLUSIONS

Results of the pre-construction water quality monitoring data highlight that the receiving waterways are affected by external influences from surrounding residential and industrial sites, as well as other construction projects. The 167% increase in monthly rainfall compared with long-term mean suggests that rainfall too contributed to the variance in monitoring data between sites and against the preliminary trigger values identified within the SWMP. It is, therefore, not possible to identify the exact influence on water quality as a result of the CTP Works. However, AFJV's process for testing water prior to discharge off site ensures water quality is within the required Environmental Projection Licence (EPL) parameters.

In addition to the inspections conducted as part of the SWMP discussed in this report, AFJV conduct daily and weekly environmental inspections of each site. The Environment Representative also conducts weekly inspections, and any observations are closed out within agreed timeframes. AFJV likewise, has engaged a Soil Conservationist to assist in erosion and sediment control planning and inspecting active sites, providing input on controls.

Surface water quality monitoring will continue in accordance with the SWMP.

4. GROUNDWATER

The purpose of the Groundwater Monitoring Program (GWMP) is to identify potential impacts of the Central Tunnelling Package (CTP) Works on groundwater quality within the local environments. The data presented in the bi-annual construction monitoring report (this report) is submitted in accordance with Condition C23 of the Project Planning Approval, which requires reporting of the results of the CTP Works to the to the Planning Secretary, ER and relevant regulatory agencies.

This report details the results during the construction phase of the GWMP. This will investigate the baseline groundwater quality against operational monitoring data undertaken during the specified stage of the project.

4.1 MONITORING LOCATIONS

In accordance with the GWMP there were 39 boreholes identified that would be utilised throughout the project to monitor and sample from. However, during construction, a number of boreholes required removal due to construction activities occurring in that location. Borehole monitoring locations utilised during the reporting period are summarised in Appendix G.

Between January and March 2022 ERM were engaged to complete three monthly baseline 'preconstruction' monitoring rounds. Following the completion of this, monitoring in the 'construction' phase of the project- was undertaken by AFJV as each site commenced ground disturbance activities likely to intercept with groundwater ie Piling, refer to Table 4-A for a summary of monitoring completed within the reporting period.

	Orregard		Monitoring Status	
Site	Ground Disturbance Trigger Date	Baseline Monitoring (3 Months)	Quarterly Monitoring	
The Bays	05/04/2022		Round 1:May 5 ¹	N/A
			Round 2 May 25	
			Round 3: June 21	
Five Dock	23/05/2022	Round 1: January 21	Scheduled for Round 1: June 21	N/A
Burwood North	1/06/2022	Round 2: February 22	Scheduled for Round 1: June 21	N/A
North Strathfield	N/A	Round 3: March 16	N/A	N/A
Sydney Olympic Park	21/06/2022		Round 1: Scheduled for July 18	N/A

TABLE 4-A: GROUNDWATER MONITORING SUMMARY

1. Groundwater monitoring was scheduled to be completed the week proceeding (commencing 25 April) however due to staff COVID shortages, monitoring was postponed till May 5.

4.2 GROUNDWATER QUALITY RESULTS

During the baseline monitoring rounds conducted by ERM, there were some variations regarding accessing boreholes from the GWMP due to a combination of construction and accessibility issues. However, ERM considered that the data obtained during these monitoring events are sufficient to provide an adequate baseline assessment of most locations/sites. The exceptions to this are the tunnel location NW of SOP and the tunnel SOP to NS locations, however both of which have been to date unaffected by construction works.

Exceedances of trigger levels adopted for assessing groundwater were noted predominately for metals and inorganics for borehole SMW_BH054. This monitoring event was conducted on the 27th of May, however importantly, May received double the mean rain for the month in 2022. This increase in rainfall influenced the quality and or levels of groundwater present due to increased volumes of surface water interacting with the water table during period.

Monitoring rounds were completed for The Bays on May 5th and May 26th (Round 1 & 2 respectively), following the commencement of piling. Monitoring was completed using the AFJV well development, gauging and sampling data sheet. See Figure 4-1 for an example of this data sheet completed on borehole S54 during The Bays round 2 monitoring.

These monitoring rounds were limited in nature due to constraints relating to access. Many of the boreholes were either not accessible. This has since been rectified; however, this data is captured after the 20th of June and as such will be analysed as part of reporting period 2. The data captured from these monitoring events is available in Appendix H.

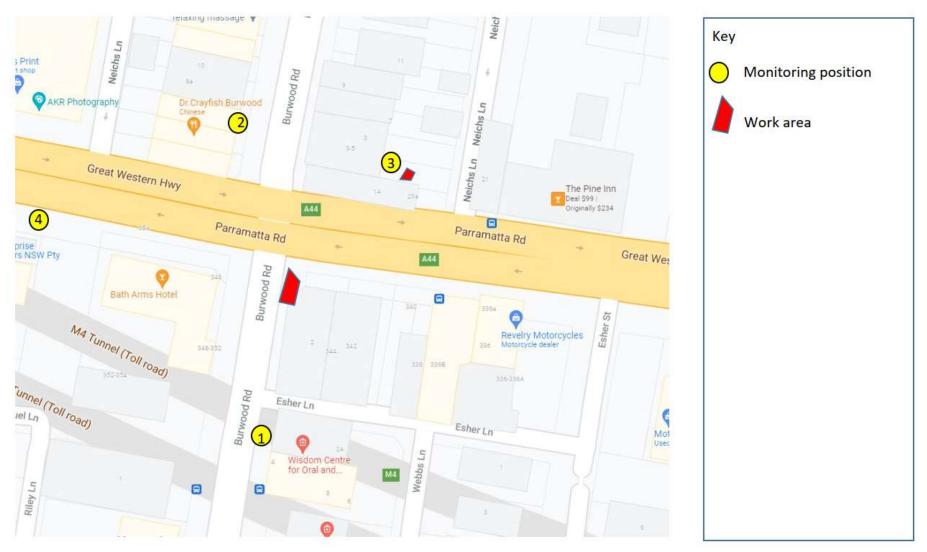
4.2.1 GROUNDWATER LEVELS

During the reporting period, groundwater levels in boreholes tunnel alignment and at surrounding the construction sites, changed slightly over time. However, given that during the reporting period, bulk excavation of the station boxes at all sites had not commenced, any variances cannot be attributed to the CTP Works. Refer to Appendix I for a summary of all groundwater level data compiled during the reporting period.

4.3 CONCLUSIONS

Following the completion of the baseline monitoring rounds, The Bays was the only site which had triggered construction monitoring within the reporting period. Burwood and Five Dock monitoring round 1 was scheduled to commence on June 21st, and as such those results will be analysed in a subsequent B-ACMR. The 167% increase in monthly rainfall compared with long-term mean during the reporting period suggests that rainfall could have contributed to the variances in groundwater levels/quality. Groundwater drawdown predictions will also be reviewed and updated following the completion of all construction monitoring rounds. Subsequently monitoring data will be evaluated against the revised predictions and a management response initiated where required.

Groundwater quality monitoring will continue in accordance with the GWMP.


Project No :	CTP	IG DATA SI	1000			No :			
-50,085-535,90			Pito	ject Name :	_	_		_	
Gaug	Date :	and the second second second	and the second second second second		Pa	rformed By	Chive/	Greept	
	Time : SWL : Commenta :	11-25A 3-30ml no ado	M TOC)	Deptr	Bore Depth : i to LNAPL :		/	(OC.) LNA3 (It yes, DNA3 (It yes,	I Danseler : Y / N H. Present : Y / N thickness) : <u>NA</u> PL. Present : Y / N thickness) : <u>NA</u>
	ance required : 'hoto Number :	IP Seral	3963	, 900	10 #7	514	Visual co	ntemation v	with bailer (Y / N
Purging / De				-					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	Date : Purge Method :			Pe	formed By :	Sec. and		Well Dias	meter:
i.	Time Started : Time Stopped :		SWL (start) : SWL (end) :			Removed : arge Rate :		-	epth (start) : lepth (end) :
	Comments :							NA	N. Present : Y / N thickness) :
Samp	linn	The second s	-					1.14.0	
	pling Method : Time Started :	12:01 pm LDPE	punp			5	ling Depth WL (start) SWL (and)	3.301	\$ (Tac)
		12 insale				<u>n</u>	A	~A	
	Comments :		NU 142 - 288		Dudicate :	Sample ID -	N/h	1	
Field An	Comments : Duplicate Sam	Rinsonte ple Collected?	Y®		Duglicate	Sample ID :	NA	,	
Field An	Comments : Duplicate Sam		NU 142 - 288	Turp (U)	Duplicate Robo	-	N/A	3mL.	Correctinguestra, natural constra, street stat
570 11:41	Comments : Duplicate Sam Notices Maximum Maxim Maximum Maximum Maximum Maximum Maximum Maximum	ele Collected? RE UNITE	×® "	Terp (11) 22.6	1114) - 67.5	Bander Bent	10xygen	- mi	water statt
fite	Comments : Duplicate Sam Nyses : Naciona Benesis ()	ple Collected?	Y (S)	Terrys (U)	Roles (W/)	Bander Bent	10xygen	00	eccars, shown she
11:41 11:47 11:52 11:56	Comments : Duplicate Sam Myses Microsof (11) O S Z - S Z - S Z - S - 4 - 1	40 Collected?	Y () = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	100 22.6 27.6 21.6 21.6	- 675 - 695 - 695 - 1990 - 199	1.86 5.15 5.43	10xygen	3.16 5.3 3.733 3.34	water shared water shared no adar 11
11:41 11:41 11:47	Comments : Duplicate Sam Nations Nation Nations Nations Nations Nations Nations Nation	10 Collected? 08/11 7566 8847 9716	Y® == == == -== -== -== -== -== -== -== -	Terro 10 22.6 27.6 21.6	1110 - 67.5 - 4444 - 37.0	1.86 5.75 5:43	10xygen	00	white shall we adar
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	YO == 1 -=	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shirted water shirted no adar in in
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Mones Monese (III O. S Z. S Z. S J. S 4, 1 S, 3	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5.75 5.43 5.43 5.43	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	Water Shirt tool no adar 11 11
11:41 11:47 11:52 11:56 11:59	Comments : Duplicate Sam Nations Research 2.5 3 : 5 4 : 1 5 : 9 6 : 5	40 Collected? 40 0854 7566 8847 9726 10400 10717	Y () == 1 == 1	100 22.6 27.6 21.6 21.6 21.6 22.8	- 67.5 - 67.5 - 69.4 - 19.6 - 30.6 - 25.6	1.86 5:15 5:43 5:43 5:01	10xygen	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
11:41 11:47 11:52 11:56 11:59 11:59 12:01	Comments : Duplicate Sam Writes Research CO.S. Z.S. 3:5 4:4 5:3 6:5	40 Collected?	Y () = () () () () () () () () () ()	100 22.6 27.6 21.6 21.6 21.6 22.8	noixe 1710) - 67.5 - 494.4 - 57.0 - 30.6 - 25.6 - 22.6	1.86 5:15 5:43 5:43 5:01	dayyee	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11
The 11:41 11:52 11:56 11:59 12:01 12:01	Comments : Duplicate Sam Nations Bureau ()) O. & Z. & Z. & 3 : 5 4 : 1 5 : 3 6 : 5 0 : 5 0 0 : 5 0 0 : 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 Collected? 40 0814 7566 8847 9726 10400 10717 10774	Y () = () () () () () () () () () ()	100 22.6 27.6 21.6 21.6 21.6 22.8	noixe 1710) - 67.5 - 494.4 - 57.0 - 30.6 - 25.6 - 22.6	1.86 5:15 5:43 5:43 5:01	dayyee	10 3,10 3,3 3,3 3,3 3,3 4,3 3,3 4,3 3,3 4,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5	water shared water shared no adar 11

afJV

APPENDIX A - ATTENDED NOISE AND VIBRATION MONITORING LOCATIONS

A.1 BURWOOD NORTH - 24/01/2022 (21028-20220124-01)

A.2 THE BAYS - 15/03/2022 (21028-20220315-01)

A.3 FIVE DOCK - 02/05/2022 (21028-20220205-01)

Sydney Metro West-Five Dock Noise Monitoring 2 May 2022

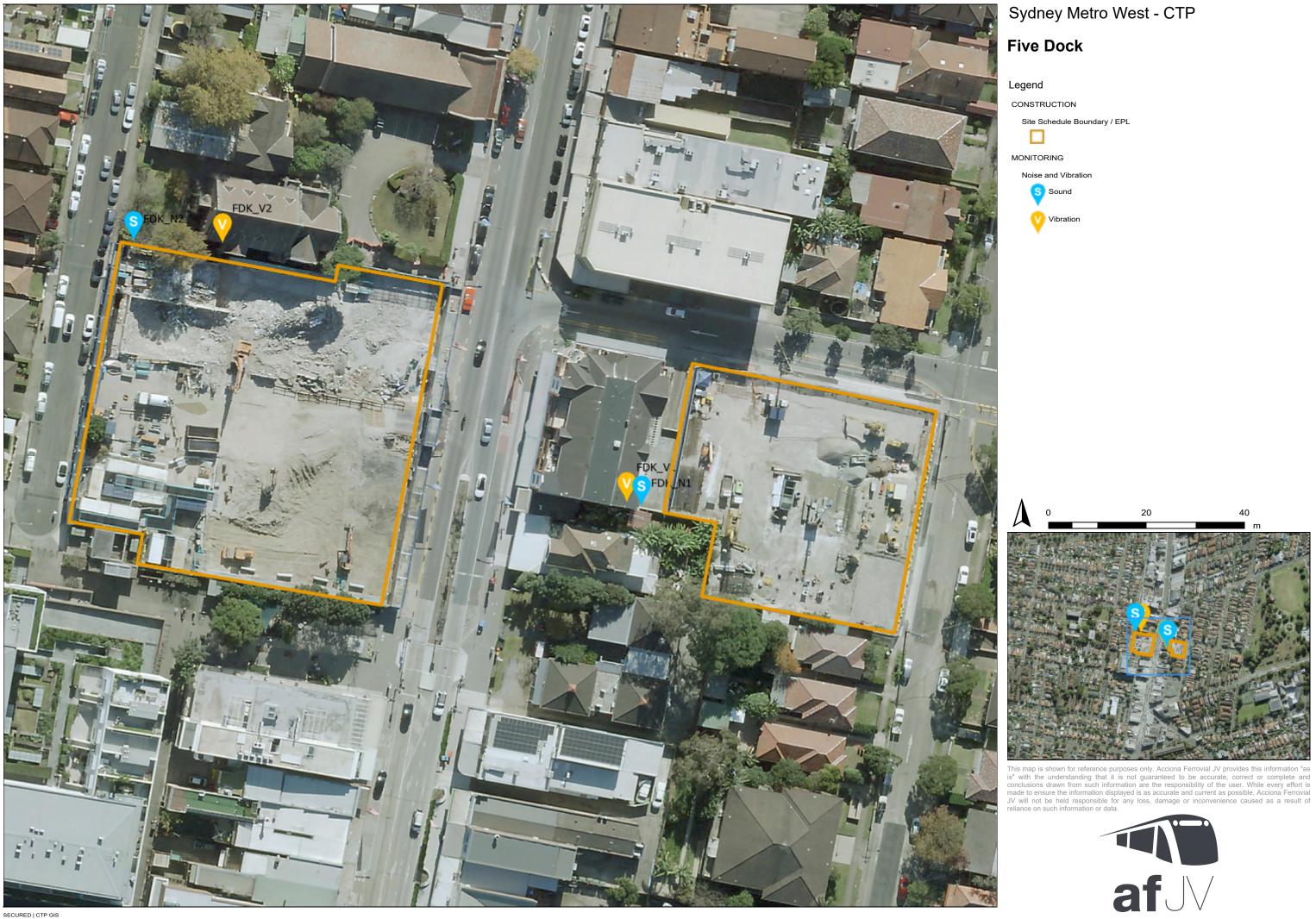
Legend
 Monitoring Locations
 Work Locations

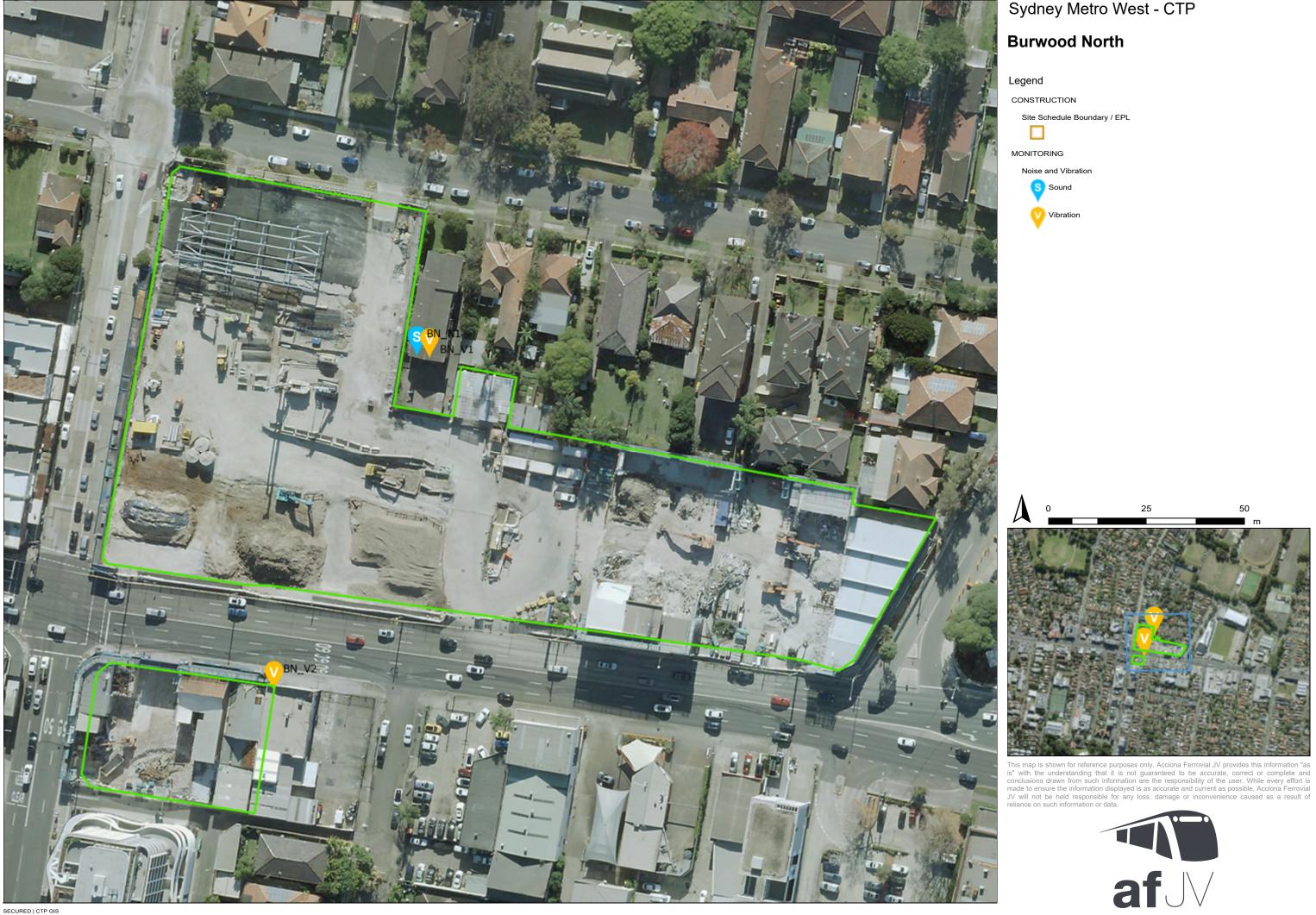
0 5 10 15 20 25 30 35 m

Ashfield

Burwood

Royal Alfred Ho


A.4 THE BAYS - 13/05/2022 (21028-20220513-01)



APPENDIX B - UNATTENDED NOISE AND VIBRATION MONITORING LOCATIONS



Sydney Metro West - CTP

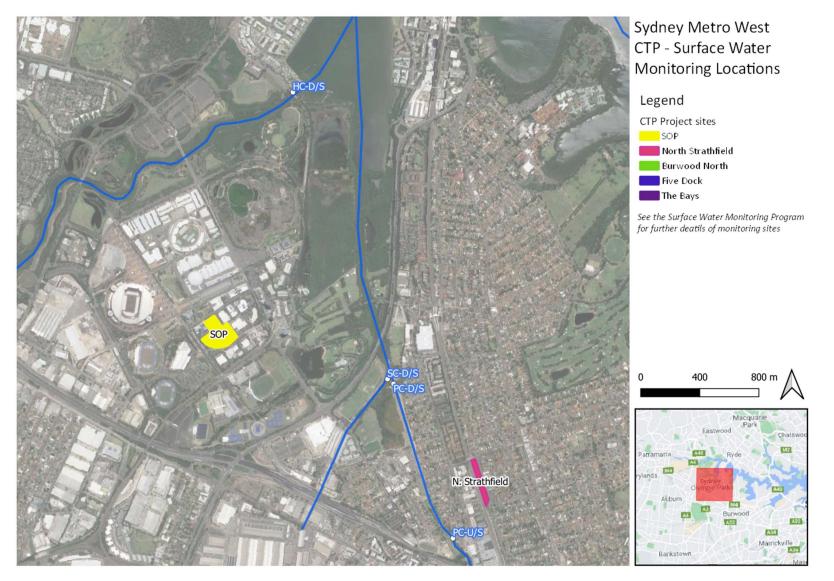
APPENDIX C - ATTENDED NOISE MONITORING SUMMARY

Noise Monitoring Register

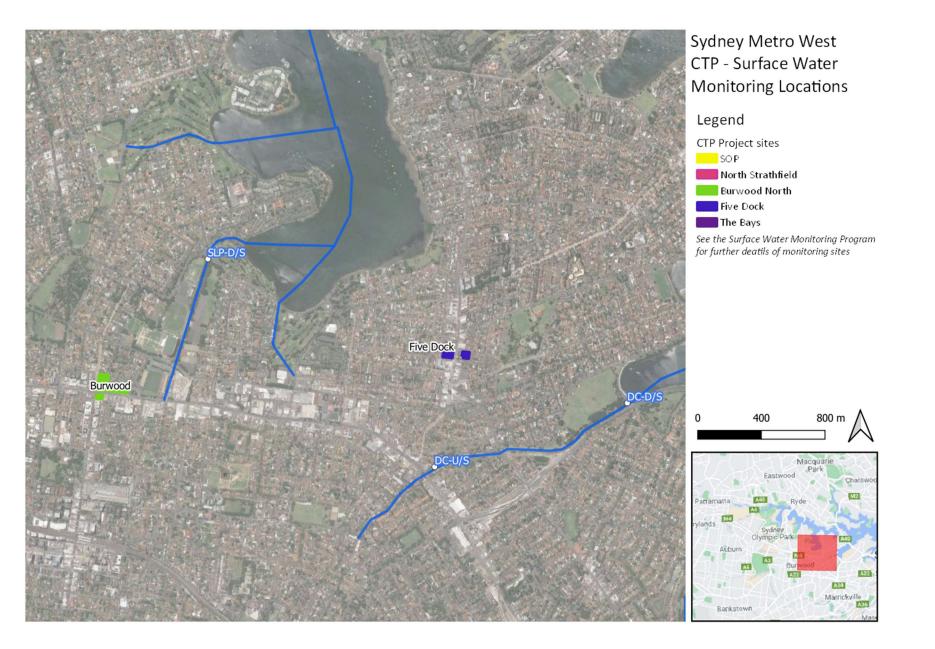
Date	Report No.	Conducted by	Site	Purpose	OOHW Permit No.	Location	Works	Model Prediction (LAeq)	LAeq	LA90	LAmax	Exceed prediction?	Notes
						.Corner Neichs Ln and Burwood Rd		87	69	67	79	No	While the works were audible at all locations, the highest noise
						Front of 1 Esher Street	Combined Utilities	82	63	57	80	No	levels were from road traffic on Burwood Road and Parramatta
11/01/2022	21028-20220111-01	S.Hughes	Burwood	OOHW	8	Corner Escher Ln and Burwood Rd	investigation	75	67	58	88	No	Road. Continuous noise levels from trucks and vehicles generally
						Corner Neichs Ln and Parramatta Rd)		74	68	59	85	No	masked the noise emissions from construction however, construction noise was observed during any lulls in traffic.
						8 Burwood Rd	Removal of awning at	65	67	60.7	84.2	Yes	The activity was still audible but not overly intrusive above the traffic. Exceedance of NMLs observed but within range of
24/01/2022	21028-20220124-01	J.Hutchison	Burwood	оонw	8	4 Burwood Rd	corner of commercial property	66	67.5	59.1	86	Yes	predicted levels at monitoring locations. LAmax levels frequently above the awakening criterion of 65 dBA; however, traffic was
						Behind Site office	F - F 7	N/A	N/A	N/A	N/A	N/A	more frequently above this threshold.
						End of Mansfield St	Excavation of services	N/A	54	52	64	No	
31/01/2022	21028-20220131-01	S.Hughes	The Bays	оонw	7	Front of 11A Mansfield St	locations using excavators and a	N/A	48	46	61	No	As the works were inaudible at all residential locations due to the ambient noise environment and the reduced items of plant
51/01/2022	21028-20220131-01	3.Hughes	The bays	UCHW	7	Front of 67 Mansfield St	vacuum truck on Port	N/A	47	38	68	No	operational during the monitoring, a revised noise level was predicted for receiver locations along Mansfield Street.
						Roberts Rd, White Bay	Access Road Rozelle.	N/A	48	46	67	No	
1/02/2022	21028-20220201-00	S.Hughes	Five Dock West	оонw	12	Front of 110 Great North Road	Permit 12 – Electrical disconnections	66	63.4	52.3	77.4	No	Construction work did not proceed for this permit. Noise monitoring captured background noise levels along Great Northern Road. This monitoring was completed for OOHW activity in accordance with the AFJV noise monitoring plan for Permit number 12.
						Front of 122 Great North Road	disconnections	70	66.5	51.1	87.5	No	Activities included investigations that determined the cut over was not possible at the time of monitoring. Background noise monitoring was completed during the investigations however, no construction activities were audible
				Establish NML		End of Mansfield Road, Rozelle	Piling and excavation at	48	61	55	77	Yes	As all activities were inaudible at the most affected residential locations during the monitoring period and barely audible within line of sight of the works and based on the measured noise levels
15/03/2022	21028-20220315-0	S.Hughes	The Bays	Complianc e for Piling	71	.Port Access Rd White Bay	the Bays site.	48	64	58	83	Yes	in the current noise environment, it is expected that the activities as measured, are NMLcompliant at the representative receiver locations.
						Mansfield Stree, Cul de Sac			55.3	46.3	69	Yes	Measured construction noise levels were lower than the precited
13/05/2022	21028-20220513-01	S.Hughes	The Bays	To validate OOHW	36	49 Mansfield Road, front of residence	Sewer installation including rock	54	53.1	38.7	73	No	noise from construction activities identified in the OOHW Permit 36. This was largely due to the operation of only a few items of
						11 Mansfield Road, Batty Street side	hammering		47	44.5	59.3	No	plant at any given time compared to the full equipment list detail in the permit.
						Corner 147 Great North Road		66	66.8	52.2	86.5	Yes	All equipment was manually operated (no generators or powered machines were required) and additional equipment such as lighting plant appeared to be battery operated and was silent. A a result, the equipment identified in Permit 83 did not reflect the
2/05/2022	21028-20220205-01	S.Hughes	Five Dock	оонw	79 & 83	Adjacent to 108 Great North Road (in park)	Scaffold Installation	59	61.4	47.9	83.5	Yes	equipment used on site to complete the scaffolding installation during the monitoring period. No vehicles were left idling and general noise from the works was expected to be NML complian apart from the random, but moderately frequent banging

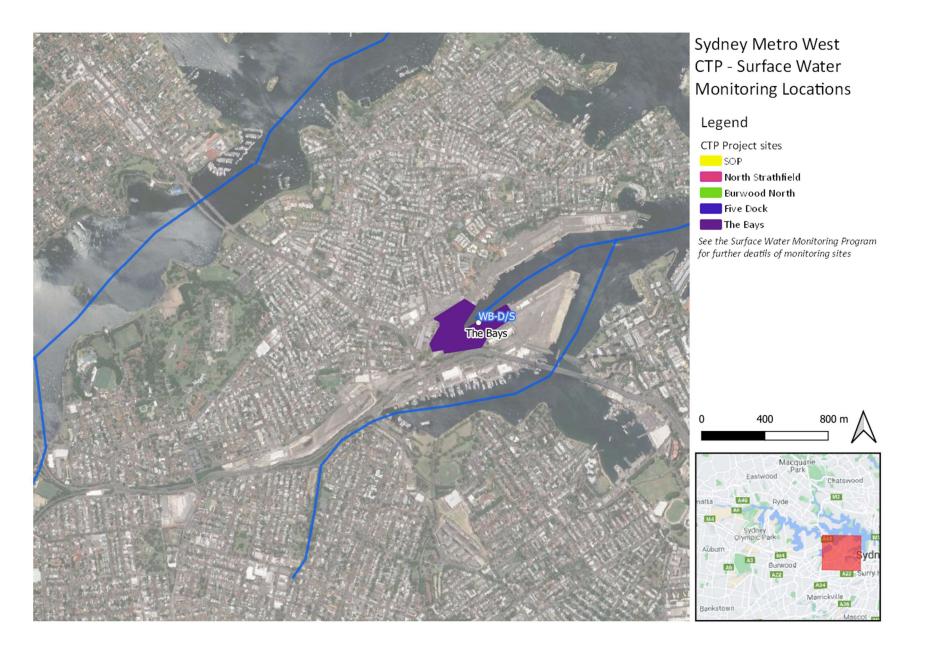
						Garfield Lane (junction of Fred Kelly Place)		65	64.9	49.5	85.4	No	(hammer on steel frame). The measured LAeq of around 65-66 dB(A) is in line with the Permit assessment at the most affected locations, notwithstanding the difference in noise generating activities.
20/06/2022	21028-20220620-01	S.Hughes	Burwood	оонw	39	Corner of Neichs Lane and Burwood Rd	Sewer Manhole Works & Restoration	94	82	73.9	96.5	No	Ambient noise environment when no construction sources operating consists of frequent car and truck pass-bys on Burwood Road. Dominant noise sources during monitoring were from vacuum truck and rock hammer (when operational). Highest measured noise levels at the nearest residential receiver location during rock hammering however, the vacuum truck was constant background noise source.

APPENDIX D - UNATTENDED VIBRATION MONITORING EXCEEDANCES


Vibration Exceedance Register

				Exceed (2.5mm/s				
Date	Time	Site	Logger Location	mm/s	Hz	Works being undertaken	Investigation Notes	Corrective / Preventative Actions
18/01/2022	14:19	твү	WBPS East Boundary	3.25	17.4	Vibratory roller operating to compact surface for the western diversion road.	Works occurring approximately 30m from the WBPS structure and monitoring location	Utilise static rolling if compaction requirements can be achieved.
24/01/2022	7:31	ТВУ	WBPS East Boundary	2.55	26.9	Vibratory roller operating to compact surface for the piling pad construction.	Works occurring approximately 40m from the WBPS structure and monitoring location	Utilise static rolling if compaction requirements can be achieved.
19/04/2022	13:31	ТВУ	WBPS East Boundary	3.1	120	Ground Improvement works, including drilling and grouting	 Exceedance was due one of the crew clearing debris from the down-the-hole hammer through banging it on the ground. The DTH hammer was clogged with silt and sand, rendering it ineffective and requiring clearing. The DTH hammer was brought to the surface where the blockage was cleared by one of the workers physically banging the hammer on the ground to remove the silt/sand. A block of timber was placed on the ground to ensure no damage to the concrete surfaces (see photo attached). The CDTH hammer excently toolboxed on the heritage sensitivities around WBPS and the additional mitigation measures applicable to the works, and id not think that the manual activity of clearing the blockage would cause exceedances of the vibration criteria. 	 Discussions held on site to avoid banging or unnecessary vibratory works near the WBPS structures. Signage proposed to be erected to remind crews of the heritage sensitivities of the building.
21/04/2022	7:53	твү	WBPS East Boundary	2.9	137	Work being undertaken at the time of the exceedance: 5t excavator cleaning up mud in front of the concrete slab connected to the WBPS.	Assumed action causing exceedance: 5t excavator working within ~5m of the WBPS wall. Operation of excavator causing vibration to be transferred through the concrete slab to the WBPS wall.	 Assumed action causing exceedance: 5t excavator working within ~5m of the WBPS wall. Operation of excavator causing vibration to be transferred through the concrete slab to the WBPS wall. Preventative actions: Revise activity to position 5t excavator further away from the wall (off the connecting concrete slab). O this enon-mechanical means to clean the mud off the concrete slab (brush, gurney, etc.) Note: Workers were aware of the sensitivities of vibration to the heritage building. Note: Workers did not think using a small excavator would result in vibration concerns.
21/04/2022	7:55	твү	WBPS East Boundary	3.15	120	Work being undertaken at the time of the exceedance: St excavator cleaning up mud in front of the concrete slab connected to the WBPS.	Assumed action causing exceedance: St excavator working within ~5m of the WBPS wall. Operation of excavator causing vibration to be transferred through the concrete slab to the WBPS wall.	-Assumed action causing exceedance: St excavator working within ~Sm of the WBPS wall. Operation of excavator causing vibration to be transferred through the concrete slab to the WBPS wall. -Preventative actions: oRevise activity to position St excavator further away from the wall (off the connecting concrete slab). oUtilise non-mechanical means to clean the mud off the concrete slab (brush, gurney, etc.) -Note: Workers were aware of the sensitivities of vibration to the heritage building. -Note: Workers did not think using a small excavator would result in vibration concerns.
18/05/2022	13:22	твү	WBPS East Boundary	3.55	158	Works being undertaken included drilling for ground improvement works. The hole being drilled is the closest location to the vibration monitoring location.	-Potential cause of vibration is the casing contacting the concrete at the surface during use of the drill rig. -Protection fencing with signage is in place to ensure no direct damage to WBPS wall. -Mitigation measures are being implemented in accordance with the NVMP.H23	 Use least vibratory intensive plant available to complete the work. NOTE: Smallest drill rig available is being used. Employ least vibratory intensive methodology available. NOTE: Hammer drilling is proposed as a methodology, but rotary drilling was being utilised at this point, which minimised potential vibratory impacts associated with the activity. Casing will be removed tomorrow and rotary drilling will be utilised. If rotary drilling fails to develop the drill hole, hammer drilling will be required. ACTION: Utilise rotary drilling where possible. ACTION: Ensure drill rig is not contacting the concrete pavement at the surface to minimise vibration transmission into the WBPS eastern wall.H27
19/05/2022	15:58	ТВУ	WBPS East Boundary	2.65	171	Works being undertaken included drilling for ground improvement works. The hole being drilled is the closest location to the vibration monitoring location.	-Potential cause of vibration is the casing contacting the concrete at the surface during use of the drill rig. -Protection fencing with signage is in place to ensure no direct damage to WBPS wall. -Mitigation measures are being implemented in accordance with the NVMP.H23	 Use least vibratory intensive plant available to complete the work. NOTE: Smallest drill rig available is being used. Employ least vibratory intensive methodology available. NOTE: Hammer drilling is proposed as a methodology, but rotary drilling was being utilised at this point, which minimised potential vibratory impacts associated with the activity. Casing will be removed tomorrow and rotary drilling will be utilised. If rotary drilling fails to develop the drill hole, hammer drilling will be required. O ACTION: Utilise rotary drilling where possible. O ACTION: Ensure drill rig is not contacting the concrete pavement at the surface to minimise vibration transmission into the WBPS eastern wall.H27
25/05/2022	13:30	ТВҮ	WBPS East Boundary	3.2	146	Works being undertaken included drilling for ground improvement works. The hole being drilled is the closest location to the vibration monitoring location.	- DTH attachment required to be used close to the surface to break through a second concrete surface uncovered beneath the top concrete layer. This layer could not be core drilled due to its depth, so was required to be hammered so that the drill could operate.	- Minimise hammering wherever possible.
21/04/2022	11:36	BWD	Revelry Cycles (336 Parramatta Rd)	7.79	293	Works being undertaken included demolition on the Southern Shaft and core drilling for the purpose of soil testing	 Installation of the test pit involves using both a coring saw and a small hand held HLTI breaker, which would have been the cause of vibration exceedance 	- Ensure team undertaking coring for soil testing is aware of location of geophone, and ensure coring methodology doesn't create high levels of vibration.


28/04/2022	8:30	BWD	16 Burton St, Concord	13	20.5	Works being undertaken included	 Investigation of the exceedance found that the exceedance was due to the use of a 20T vibratory roller clipping the concrete hardstand 	- Team toolboxed on using static rolling as opposed to vibratory rolling


APPENDIX E - SURFACE WATER MONITORING LOCATIONS

APPENDIX F - SURFACE WATER QUALITY RESULTS

Sydney Metro West - Central Tunnelling Package Surface Water Monitoring

Rev: 00	Last Updated:	1/08/2022
---------	---------------	-----------

Receiving watercourse type (WQO)	Turbidity	pH	Dissolved Oxygen	Oil and grease	Electrical conductivity/Salinity
Aquatic Ecosystem (Estuaries)	0.5–10 NTU	7.0-8.5	80- <mark>1</mark> 10%	None visible on surface	Lowland rivers: 125– 2200 µS/cm

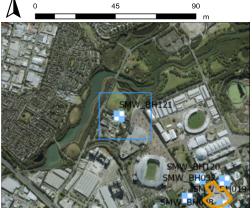
LEGEND

Preliminary Trigger Value Exceedance

					Field Measu	irement						
SW Monitoring ID	Date	Monitoring Category	рН	Temp (degrees)	DO (%)	Electrical Conductivity (μS/cm)	Turbidity (NTU)	Visual Inspection (Oil & Grease)	Current Weather Conditions	Rainfall in last 24hrs Sydney (Observatory Hill) (mm)	Rainfall in last 24hrs ydney Olympic Park AWS (Archery Centre) (mm)	Additional Comments
WB-D/S	23/12/2021	Pre-Construction Monitoring	7.08	24.17	140.5	49900	0.1	None	Light rain, no wind	18	1.4	N/A
DC-U/S	17/12/2021	Pre-Construction Monitoring	12.2	21.25	92.7	3610	20.4	None	Overcast conditions, no wind	0	0	Waster was flowing moderately
DC-D/S	17/12/2021	Pre-Construction Monitoring	7.92	23.16	48.9	44700	18.1	None	Overcast conditions, no wind	0	0	Water was flowing slowly, visible debris at the surface (mostly vegetation)
SLP-D/S	17/12/2021	Pre-Construction Monitoring	10.5	21.76	220	46100	10	None	Overcast conditions, no wind	0	0	Water was flowing slowly
PC-U/S	17/12/2021	Pre-Construction Monitoring	8.83	24.82	99.3	2110	43	None	Sunny conditions, no wind	0	0	Water level was very low, water was in a
PC-D/S	17/12/2021	Pre-Construction Monitoring	7.63	24.77	33.5	40400	15.2	None	Overcast conditions, no wind	0	0	Water was flowing slowly
SC-D/S	17/12/2021	Pre-Construction Monitoring	7.42	24.66	17.7	41500	99.6	None	Overcast conditions, moderate wind	0	0	Water was flowing slowly, while testing v
HC-D/S	17/12/2021	Pre-Construction Monitoring	7.89	24.03	53.6	40300	36	None	Overcast conditions, no wind	0	0	Water was flowing slowly
WB-D/S	24/01/2022	Pre-Construction Monitoring	6.85	24	61.6	49200	0	Small streak of visible oil at surface	Overcast conditions, no wind	1.2	0.2	N/A
DC-U/S	24/01/2022	Pre-Construction Monitoring	6.85	23.3	72.3	956	69.3	None	Overcast conditions, no wind	1.2	0.2	N/A
DC-D/S	24/01/2022	Pre-Construction Monitoring	7.15	24.46	66.4	47000	4.3	None	Overcast conditions with very light rainfall, no wind	1.2	0.2	N/A
SLP-D/S	24/01/2022	Pre-Construction Monitoring	7.19	23.99	70.6	39900	1.8	None	Overcast conditions, light wind	1.2	0.2	N/A
PC-U/S	24/01/2022	Pre-Construction Monitoring	7.07	24.31	86.3	1070	19.9	None	Overcast conditions, no wind	1.2	0.2	N/A
PC-D/S	24/01/2022	Pre-Construction Monitoring	7.26	24.72	49.9	30500	4	large streak of visible oil at surface	Sunny conditions with light cloud cover, no wind	1.2	0.2	N/A
SC-D/S	24/01/2022	Pre-Construction Monitoring	7.23	25.14	40.1	21300	8	None	Sunny conditions with light cloud cover, no wind	1.2	0.2	N/A
HC-D/S	24/01/2022	Pre-Construction Monitoring	7.27	25.49	126	38200	4.8	None	Sunny conditions with light cloud cover, moderate wind	1.2	0.2	N/A
WB-D/S	22/02/2022	Pre-Construction Monitoring	6.65	23.54	127.7	44100	1.3	None	overcast conditions, light wind	8.2	5.2	Low water flow
DC-D/S	22/02/2022	Pre-Construction Monitoring	6.66	24.01	57.5	45500	4.2	None	Light rain, moderate wind	8.2	5.2	Low water flow
DC-U/S	22/02/2022	Pre-Construction Monitoring	7.28	22.76	69.6	402	34.7	None	Light rain, no wind	8.2	5.2	Moderate water flow
SLP-D/S	22/02/2022	Pre-Construction Monitoring	6.63	23.45	75.2	43500	8.1	None	Moderate rain, no wind	8.2	5.2	Low water flow, moderate debris
PC-U/S	22/02/2022	Pre-Construction Monitoring	7.29	22.29	86.6	332	58.7	None	Heavy rain, no wind	8.2	5.2	High water flow
PC-D/S	22/02/2022	Pre-Construction Monitoring	7.38	21.29	64.9	283	80.3	None	Heavy rain, light wind	8.2	5.2	Noticably turbid water (for filtered meta
SC-D/S	22/02/2022	Pre-Construction Monitoring	7.45	21.18	64	154	79	None	Heavy rain, light wind	8.2	5.2	Noticably turbid water (for filtered meta
HC-D/S	22/02/2022	Pre-Construction Monitoring	6.68	22.44	47.7	18600	33.1	None	Heavy rain, moderate wind	8.2	5.2	Noticably turbid water (for filtered meta
WB-D/S	24/02/2022	Post-Rainfall Monitoring	8.57	25	125.4	22200	5.9	None	Overcast conditions, moderate wind	44.4	17.4	Post rain event monitoring conducted
WB-D/S	4/03/2022	Post-Rainfall Monitoring	6.34	23.87	106.2	22400	21.1	None	Light sun/overcast conditions, moderate wind, low water flow	19.6	26.8	Post rain event monitoring conducted

Sci.,K 48/1000 Maximum 6.4 Store Transmission 113.0 20.6 Partametering BADAS 48/1000 Maximum 6.4.8 23.6 643.1 71.4 24.6 Maximum 13.9 20.6 Partametering BADAS 48/1000 Maximum 6.4.8 23.1 23.4 451 81.0 Store Other ant working in the store 13.9 26.8 Partametering 4.8.0 26.8 Partametering 4.8.0 </th <th></th>													
h V	DC-D/S	4/03/2022		6.53	23.23	56.3	764	14.9	None		19.6	26.8	Post rain event monitoring conducted
10^{10} 10^{100}	DC-U/S	4/03/2022		6.44	23.22	45.2	515	56.6	None		19.6	26.8	Post rain event monitoring conducted
head $head head head $	SLP-D/S	4/03/2022		6.39	22.96	62.3	718	25.8	None	-	19.6	26.8	Post rain event monitoring conducted
Prob 43/3722 Problem 6.44 2.44 6.49 6.12 3.24 None consolity wind, into into 19.8 36.8 percent on some wind wind, wind wind wind wind wind wind wind wind	PC-U/S	4/03/2022		6.48	23.31	73.8	451	81	None		19.6	26.8	Post rain event monitoring conducted
Sch? 4.08.000 Maximum 6.37 7.37 7.98 3.94 9.31 None constrained price 1.95 3.88 Patrain event ends 14:0.04 400000 Restandad 6.41 7.3.4 4.9.5 17.00 16.10 None Lipht intro, or wind, low flow ware 13.6 3.6.0 7.6.0 3.6.00 13.6.0<	PC-D/S	4/03/2022		6.44	23.43	64.9	611	15.2	None	coverage, light wind, low flow	19.6	26.8	Post rain event monitoring conducted
No. Automatories	SC-D/S	4/03/2022		6.57	25.27	79.8	345	39.3	None	coverage, light wind, low flow	19.6	26.8	Post rain event monitoring conducted
Web/S 25/0/202 Monthly Monthly S2/0/202 Monthly Monthly Monthly S2/0/202 //11 22.94 12.8 42.80 0.1 Mone Luth light hole mounted 15.8 2.0 Mone mounted DC-0/5 25/03/202 Monthly Monthly Monthly Monthly 8.13 22.7 0.0.3 12300 21.4 None Smy while gift cload cover, no wind 16.6 2.0 Def mon while prime of mount at careful prime prime of a surface 9.0-0/5 25/03/202 Monthly Monthry Monthry 8.12 22.14 146.6 2500 22.6 ling strainface Overcast, no wind 16.6 2.0 Web/ prime prime prime prime prime of a surface PC-0/5 25/03/202 Monthly Monthry 7.5 22.1 9.0 2.00 2.5 None Overcast, no wind 16.6 2.0 Web/ prime prime PC-0/5 25/03/202 Monthly Monthry 7.5 22.1 9.0 10.00 2.15 None Overcast, no wind 16.6 2.0 Visible debrin at winf prim difficient prim prim difficient prim prim difficient prim prim difficient prim prim difficient prim prim difficient prim	HC-D/S	4/03/2022		6.41	23.24	45.9	1740	16.1	None	Light rain, no wind, low flow water	19.6	26.8	Post rain event monitoring conducted
	WB-D/S	25/03/2022		7.11	22.94	128.6	41800	0.3	None	Light rain, Light wind	16.6	20	Tidal flow
DC U/S 25/37/202 Monthorm 5.19 22.78 116.7 1330 74.2 Nee Light cloud cover, no wind 16.6 10.0 process covers covevers covers covers covevers covers covers covers covev	DC-D/S	25/03/2022		7.37	21.79	60.3	12300	21.4	None		16.6	20	Low flow
SiP-ly Z/(04)/022 Monitoring 7.72 2.24 146.6 350 12.6 Fail at surface Decreast, no wind 16.6 2.0 Weißly murky, dwi net surface PC-U/S 25/03/2022 Monitoring 8.22 22.18 133 1620 36.1 None Overcast, no wind 16.6 2.0 Medium Flow, Choir PC-U/S 25/03/2022 Monitoring 7.55 22.1 58.2 10500 21.5 None Overcast, no wind 16.6 2.0 Visible debris at surface SC-0/S 25/03/2022 Monitoring 7.52 21.1 38.4 28700 4 None Overcast, no wind 16.6 2.0 Visible debris at surface MC-0/S 25/03/2022 Monitoring 7.46 22.73 88.4 28700 4 None Overcast, no wind 16.6 2.0 Visible debris at surface WB-0/S 21/04/2022 Monitoring 8.8 23.07 74.3 24200 0 None Overcast, no wind, light rain	DC-U/S	25/03/2022		8.19	22.78	116.7	1230	74.2	None	Light cloud cover, no wind	16.6	20	Medium flow. Visible soap/suds being pumped from what appears to be carwash up Parramatta Road
PC-0/9 25/03/202 Monthyring 6.2.2 22.1.8 13.4 16.0 36.1 None Observat, no wind 16.5 20 Medium How, Chinor PC-0/5 25/03/202 Monthyring 7.55 22.1 39.2 10500 21.5 None Overcast, no wind 16.6 20 Visible debris start SC-0/5 25/03/202 Monthyring 7.55 22.1 31.2 11800 14 None Overcast, no wind 16.6 20 Visible debris start MC-0/5 25/03/202 Monthyring 7.46 22.73 83.4 28700 4 None Overcast, no wind 16.6 20 Visible debris start W8-0/5 21/04/2022 Monthyring 8.08 23.07 74.3 47000 0 None Overcast, no wind, light rain 11.6 6.4 Tdal flow 0C-1/5 21/04/2022 Monthyring 8.4 20.26 87.1 4820 55.8 None Ught rain, no wind, light rain 11.6 6.4	SLP-D/S	25/03/2022		7.72	22.44	146.6	3530	12.6	, e	Overcast, no wind	16.6	20	Visibly murky, low flow
Pre-Ory 25/03/2022 Monitoring 7.55 22.1 39.2 10600 21.5 None Overcast, no wind 16.6 20 Visible deeling start Sc-0/5 25/03/202 Monitoring 7.52 21.77 31.2 11800 14 None Overcast, no wind 16.6 20 Visible deeling start HC-0/5 25/03/202 Monitoring 7.66 22.73 83.4 28700 4 None Overcast, moderate wind, light 16.6 20 Tdal flow to Parram W6-0/5 21/04/202 Monthy 8.08 23.07 74.3 47400 0 None Overcast, moderate wind, light 11.6 6.4 Tdal flow to Parram DC-0/5 21/04/202 Monthy 8 21.15 11.7 42800 3.5 None Overcast, moderate wind, light rain 11.6 6.4 Tdal flow DC-0/5 21/04/202 Monthy Montoring 8.84 20.26 87.1 434 44.2 None Overcast, no wind, light rain 11.6 <td>PC-U/S</td> <td>25/03/2022</td> <td></td> <td>8.22</td> <td>22.18</td> <td>133</td> <td>1620</td> <td>36.1</td> <td>None</td> <td>Overcast, no wind</td> <td>16.6</td> <td>20</td> <td>Medium Flow, Chloride odour</td>	PC-U/S	25/03/2022		8.22	22.18	133	1620	36.1	None	Overcast, no wind	16.6	20	Medium Flow, Chloride odour
Sc.Urs 25/03/202 Monitoring 7.52 21.17 31.2 11800 14 None Overcast, no wind 16.6 20 Visible deens a string HC-D/S 25/03/202 Monitoring 7.46 22.73 83.4 28700 4 None Overcast, moderate wind 16.6 2.0 Tidal flow to Parrame WE-D/S 21/04/2022 Monitoring 8.08 23.07 74.3 47400 0 None Overcast, moderate wind 16.6 6.4 Tidal flow to Parrame DC-D/S 21/04/2022 Monitoring 8.8 21.15 117.7 42800 3.5 None Overcast, mowind, light rain 11.6 6.4 Tidal flow DC-U/S 21/04/2022 Monitoring 8.94 20.26 87.1 434 44.2 None Ugst rain, no wind, Dight rain 11.6 6.4 Moderate water flow SLP-D/S 21/04/2022 Monitoring 7.85 20.6 84.1 4830 55.8 None Overcast, no wind, light rain 11.	PC-D/S	25/03/2022		7.55	22.1	59.2	10500	21.5	None	Overcast, no wind	16.6	20	Visibile debris at surface, low flow
He-Ury 25/03/202 Monitoring 7.4s 22.73 8.8.4 2.800 4 None Overast, moderate wind 16.6 2.0 Inda frow to Parame WB-D/s 21/04/202 Monitoring 8.08 23.07 74.3 47400 0 None Overast, moderate wind, light minitoring 11.6 6.4 Tidal frow to Parame DC-D/s 21/04/2022 Monitoring 8 21.15 117.7 42800 3.5 None Overast, moderate wind, light rain 11.6 6.4 Tidal frow to Parame DC-U/s 21/04/2022 Monitoring 8 20.15 87.1 434 44.2 None Uight rain, no wind, light rain 11.6 6.4 Moderate water flow SLP-D/s 21/04/202 Monitoring 7.85 20.6 84.1 4830 55.8 None Overast, no wind, light rain 11.6 6.4 Low flow SLP-D/s 21/04/202 Monitoring 7.81 20.08 75.6 19700 25.7 None Overast, light wind, nora	SC-D/S	25/03/2022	-	7.52	21.77	31.2	11800	14	None	Overcast, no wind	16.6	20	Visibile debris at surface, low flow
WR-0/S 21/04/2022 Monitoring Monitoring 8:08 2:307 74.3 47400 0 None Frain 11.6 6.4 Interntown DC-0/S 21/04/2022 Monthly Monitoring 8 21.15 117.7 42800 3.5 None Overcast, no wind, light rain 11.6 6.4 Tidal flow DC-0/S 21/04/2022 Monthly Monitoring 8.94 20.26 87.1 434 44.2 None Ught rain, no wind, light rain 11.6 6.4 Moderate water flow SUP-0/S 21/04/2022 Monthly Monitoring 7.85 20.6 84.1 4830 55.8 None Overcast, no wind, light rain 11.6 6.4 Low flow PC-0/S 21/04/2022 Monthly Monitoring 7.81 20.08 7.56 19700 25.7 None Overcast, no wind, light rain 11.6 6.4 Tidal flow SC-0/S 21/04/2022 Monthly Monitoring 7.84 20.24 75.8 22300 8.1 None Overcast, light wind, no rain	HC-D/S	25/03/2022		7.46	22.73	83.4	28700	4	None	Overcast, moderate wind	16.6	20	Tidal flow to Parramatta river
DC-D/S 21/04/2022 Monitoring 8 21.15 11/.7 42800 3.5 None Overast, no wind, light rain 11.6 6.4 Tidal flow DC-U/S 21/04/2022 Monitoring 8.94 20.26 87.1 434 44.2 None Light rain, no wind, Overcast 11.6 6.4 Moderate water flow SLP-D/S 21/04/2022 Monthly Monitoring 7.85 20.6 84.1 4830 55.8 None Overcast, no wind, light rain 11.6 6.4 Moderate water flow PC-U/S 21/04/2022 Monthly Monitoring 8.32 19.88 79.6 447 82.8 None Overcast, no wind, light rain 11.6 6.4 Moderate water flow PC-U/S 21/04/2022 Monthly Monitoring 7.81 20.08 75.6 19700 25.7 None Overcast, light wind, no rain 11.6 6.4 Tidal flow SC-D/S 21/04/2022 Monthly Monitoring 7.84 20.24 75.8 22300 8.1 None Overc	WB-D/S	21/04/2022		8.08	23.07	74.3	47400	0	None		11.6	6.4	Tidal flow
DC-U/S 21/04/2022 Monitoring Monitoring 8.94 20.26 87.1 434 44.2 None Light rain, no wind, Overcast 11.6 6.4 Moderate water flow SLP-D/S 21/04/2022 Monitoring Monitoring 7.85 20.6 84.1 4830 55.8 None Overcast, no wind, light rain 11.6 6.4 Iow flow PC-U/S 21/04/2022 Monitoring Monitoring 8.32 19.88 79.6 447 82.8 None Overcast, no wind, light rain 11.6 6.4 Moderate water flow PC-U/S 21/04/2022 Monthly Monitoring 7.81 20.08 75.6 19700 25.7 None Overcast, light wind, no rain 11.6 6.4 Tidal flow SC-D/S 21/04/2022 Monthly Monitoring 7.84 20.24 75.8 22300 8.1 None Overcast, light wind, no rain 11.6 6.4 Tidal flow HC-D/S 21/04/2022 Monthly Monitoring 7.77 21.17 85.5 37200 5.6 None	DC-D/S	21/04/2022		8	21.15	117.7	42800	3.5	None	Overcast, no wind, light rain	11.6	6.4	Tidal flow
SUP-D/S21/04/202Monitoring7.8520.684.1483055.8NoneOvercast, no wind, light rain11.66.4Low HowPC-U/S21/04/2022Monthly Monitoring8.3219.8879.644788.8NoneOvercast, no wind, light rain11.66.4Moderate water flowPC-U/S21/04/2022Monthly Monitoring7.8120.0875.61970025.7NoneOvercast, light wind, no rain11.66.4Tidal flowSC-D/S21/04/2022Monthly Monitoring7.8420.2475.8223008.1NoneOvercast, light wind, no rain11.66.4Tidal flowHC-D/S21/04/2022Monthly Monitoring7.7721.1785.5372005.6NoneLight rain, no wind11.66.4Low flowWB-D/S13/05/2022Post-Rainfall Monitoring8.6319.0777.3354002.9NoneOvercast, light wind, light rain93.4Tidal flowDC-D/S13/05/2022Post-Rainfall Monitoring8.6518.8892.7695010.6large streak of visible low flowOvercast, no wind, light rain93.4Tidal flow	DC-U/S	21/04/2022	· · · · ·	8.94	20.26	87.1	434	44.2	None	Light rain, no wind, Overcast	11.6	6.4	Moderate water flow
PC-0/S21/04/2022Monitoring6.3213.8875.61970025.7NoneOvercast, light wind, no rain11.66.4Noderate water nowPC-D/S21/04/2022Monthly Monitoring7.8120.0875.61970025.7NoneOvercast, light wind, no rain11.66.4Tidal flowSC-D/S21/04/2022Monthly Monitoring7.8420.2475.8223008.1NoneOvercast, light wind, no rain11.66.4Tidal flowHC-D/S21/04/2022Monthly Monitoring7.7721.1785.5372005.6NoneLight rain, no wind11.66.4Low flowWB-D/S13/05/2022Post-Rainfall Monitoring8.6319.0777.3354002.9NoneOvercast, light wind, light rain93.4Tidal flowDC-D/S13/05/2022Post-Rainfall Monitoring8.6518.8892.7695010.6large streak of visible Decende streak of visible93.4Tidal flow	SLP-D/S	21/04/2022	Monitoring	7.85	20.6	84.1	4830	55.8	None	Overcast, no wind, light rain	11.6	6.4	Low flow
PC-D/S21/04/2022Monitoring7.8120.087.8619/0025.7NoneOvercast, light wind, no rain11.66.4Inda HowSC-D/S21/04/2022Monthly Monitoring7.8420.2475.8223008.1NoneOvercast, light wind, no rain11.66.4Tidal flowHC-D/S21/04/2022Monthly Monitoring7.7721.1785.5372005.6NoneLight rain, no wind11.66.4Low flowWB-D/S13/05/2022Post-Rainfall Monitoring8.6319.0777.3354002.9NoneOvercast, light wind, light rain93.4Tidal flowDC-D/S13/05/2022Post-Rainfall Monitoring8.6518.8892.7695010.6large streak of visible large streak of visibleOvercast, No wind, No rain93.4Tidal flow	PC-U/S	21/04/2022		8.32	19.88	79.6	447	82.8	None	Overcast, no wind, light rain	11.6	6.4	Moderate water flow
SC-D/S 21/04/2022 Monitoring 7.84 20.24 7.88 22300 8.1 None Overcast, light wind, no rain 11.6 6.4 Hdai How HC-D/S 21/04/2022 Monthly Monitoring 7.77 21.17 85.5 37200 5.6 None Light rain, no wind 11.6 6.4 Idai How WB-D/S 13/05/2022 Post-Rainfall Monitoring 8.63 19.07 77.3 35400 2.9 None Overcast, light wind, light rain 9 3.4 Tidai flow DC-D/S 13/05/2022 Post-Rainfall 8.65 18.88 92.7 6950 10.6 large streak of visible Overcast, No wind No rain 9 3.4 Tidai flow	PC-D/S	21/04/2022		7.81	20.08	75.6	19700	25.7	None	Overcast, light wind, no rain	11.6	6.4	Tidal flow
HC-D/S 21/04/2022 Monitoring 1.1/1 21.1/1 85.5 37200 5.6 None Light rain, no wind 11.6 6.4 Low flow WB-D/S 13/05/2022 Post-Rainfall 8.63 19.07 77.3 35400 2.9 None Overcast, light wind, light rain 9 3.4 Tidal flow DC-D/S 13/05/2022 Post-Rainfall 8.65 18.88 92.7 6950 10.6 large streak of visible Overcast, No wind No rain 9 3.4 Tidal flow	SC-D/S	21/04/2022		7.84	20.24	75.8	22300	8.1	None	Overcast, light wind, no rain	11.6	6.4	Tidal flow
WB-D/S 13/05/2022 Monitoring 8.63 19.07 77.3 35400 2.9 None Overcast, light wind, light rain 9 3.4 Hidal flow DC-D/S 13/05/2022 Post-Rainfall 8.65 18.88 92.7 6950 10.6 large streak of visible Overcast, No wind, No rain 9 3.4 Tidal flow	HC-D/S	21/04/2022	-	7.77	21.17	85.5	37200	5.6	None	Light rain, no wind	11.6	6.4	Low flow
UC-U/S 1 15/US/2022 1 8.85 1 92.7 1 8.88 1 92.7 1 10.91 10.9 1 UVPrCast. NO WIND. NO RAIN 9 1 3.4 1100110W	WB-D/S	13/05/2022		8.63	19.07	77.3	35400	2.9	None	Overcast, light wind, light rain	9	3.4	Tidal flow
	DC-D/S	13/05/2022	Post-Rainfall Monitoring	8.65	18.88	92.7	6950	10.6	large streak of visible oil at surface	Overcast, No wind, No rain	9	3.4	Tidal flow
DC-U/S 13/05/2022 Monitoring 8.76 19.14 94.6 502 91 None Overcast, No Wind, No rain 9 3.4 within channel - could	DC-U/S	13/05/2022	Monitoring	8.76	19.14	94.6	502	91	None	Overcast, No wind, No rain	9	3.4	Moderate Flow, evidence of dumping within channel - could impact results
SLP-D/S 13/05/2022 Post-Rainfall Monitoring 8.27 19.59 88.1 2320 12.2 None Overcast, No wind, No rain 9 3.4 Low Flow	SLP-D/S	13/05/2022	Monitoring	8.27	19.59	88.1	2320	12.2	None	Overcast, No wind, No rain	9	3.4	Low Flow
PC-U/S 13/05/2022 Post-Rainfall Monitoring 8.66 19.68 105.1 525 78.1 None Overcast, No wind, No rain 9 3.4 High water flow	PC-U/S	13/05/2022		8.66	19.68	105.1	525	78.1	None	Overcast, No wind, No rain	9	3.4	High water flow
PC-D/S 13/05/2022 Post-Rainfall Monitoring 8.64 20.2 120.9 765 87.5 None Overcast, No wind, No rain 9 3.4 Low flow	PC-D/S	13/05/2022		8.64	20.2	120.9	765	87.5	None	Overcast, No wind, No rain	9	3.4	Low flow
SC-D/S 13/05/2022 Post-Rainfall Monitoring 8.49 20.25 96.7 954 40.3 None Overcast, No wind, No rain 9 3.4 Low flow	SC-D/S	13/05/2022		8.49	20.25	96.7	954	40.3	None	Overcast, No wind, No rain	9	3.4	Low flow
HC-D/S 13/05/2022 Post-Rainfall Monitoring 7.88 19.09 65.1 11300 9.9 None Overcast, light wind, No rain 9 3.4 Tidal Flow	HC-D/S	13/05/2022	Post-Rainfall	7.88	19.09	65.1	11300	9.9	None	Overcast, light wind, No rain	9	3.4	Tidal Flow
WB-D/S 26/05/2022 Monthly Monitoring 7.59 20.52 69.1 39400 5.3 None Sunny conditions, No wind 0 0 Tidal flow	WB-D/S	26/05/2022		7.59	20.52	69.1	39400	5.3	None	Sunny conditions, No wind	0	0	Tidal flow

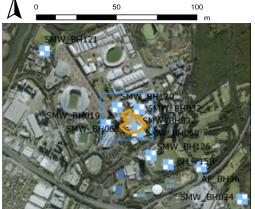
DC-D/S	26/05/2022	Monthly Monitoring	7.76	18.39	94.3	10800	17.6	None	Sunny conditions, No wind	0	0	Tidal flow, Visible Debris on surface of water
DC-U/S	26/05/2022	Monthly Monitoring	8.65	19.45	127.1	623	59.9	None	Sunny conditions, No wind	0	0	Moderate water flow
SLP-D/S	26/05/2022	Monthly Monitoring	7.76	20.19	72	4220	4.5	large streak of visible oil at surface	Sunny conditions, No wind	0	0	Low flow
PC-U/S	26/05/2022	Monthly Monitoring						None	Sunny conditions, No wind	0	0	Water level to low to sample
PC-D/S	26/05/2022	Monthly Monitoring	7.86	21.28	96.4	17300	7.3	Small shean on surface	Sunny conditions, No wind	0	0	Low flow
SC-D/S	26/05/2022	Monthly Monitoring	7.58	20.14	41.8	22000	5.2	None	Sunny conditions, No wind	0	0	Low flow
HC-D/S	26/05/2022	Monthly Monitoring	7.88	19.23	94.6	34200	2	None	Sunny conditions, No wind	0	0	Tidal flow
WB-D/S	6/06/2022	Monthly Monitoring	8.22	17.85	93.5	44900	3.4	None	Sunny conditions with high wind	0.8	0.2	Tidal flow
DC-D/S	6/06/2022	Monthly Monitoring	7.89	13.65	108.9	47900	1.9	Multiple large streaks visible on water surface	Sunny conditions with high wind	0.8	0.2	Tidal flow
DC-U/S	6/06/2022	Monthly Monitoring	8.86	13.81	129.5	948	6	None	Sunny conditions with moderate wind	0.8	0.2	Low flow
SLP-D/S	6/06/2022	Monthly Monitoring	8.13	13.8	118.2	39700	5.8	None	Sunny conditions with moderate wind	0.8	0.2	Low flow
PC-U/S	6/06/2022	Monthly Monitoring						None	Sunny conditions with moderate wind	0.8	0.2	Water level to low to sample
PC-D/S	6/06/2022	Monthly Monitoring	7.57	12.34	64.7	30400	0.9	None	Sunny conditions with moderate wind	0.8	0.2	Tidal flow
SC-D/S	6/06/2022	Monthly Monitoring	7.56	12.6	68	26900	2.7	None	Sunny conditions with moderate wind	0.8	0.2	Tidal flow
HC-D/S	6/06/2022	Monthly Monitoring	7.85	13.4	131.6	42600	0.3	None	Sunny conditions with moderate wind	0.8	0.2	Tidal flow


APPENDIX G - GROUNDWATER MONITORING LOCATIONS

Tunnel North West of SOP

Groundwater Wells

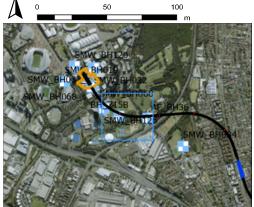
This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.



Sydney Olympic Park

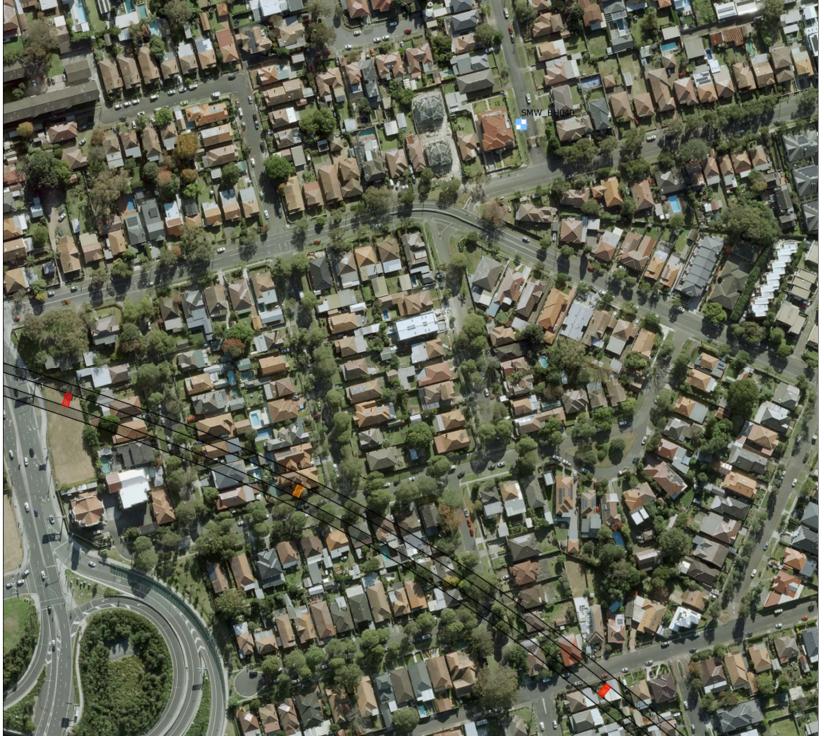
- Site Schedule Boundary / EPL
- Groundwater Wells

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.

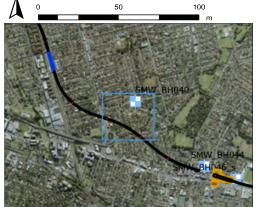


Tunnel - Sydney Olympic Park to Nort...

Legend


Site Schedule Boundary / EPL MONITORING

Groundwater Wells

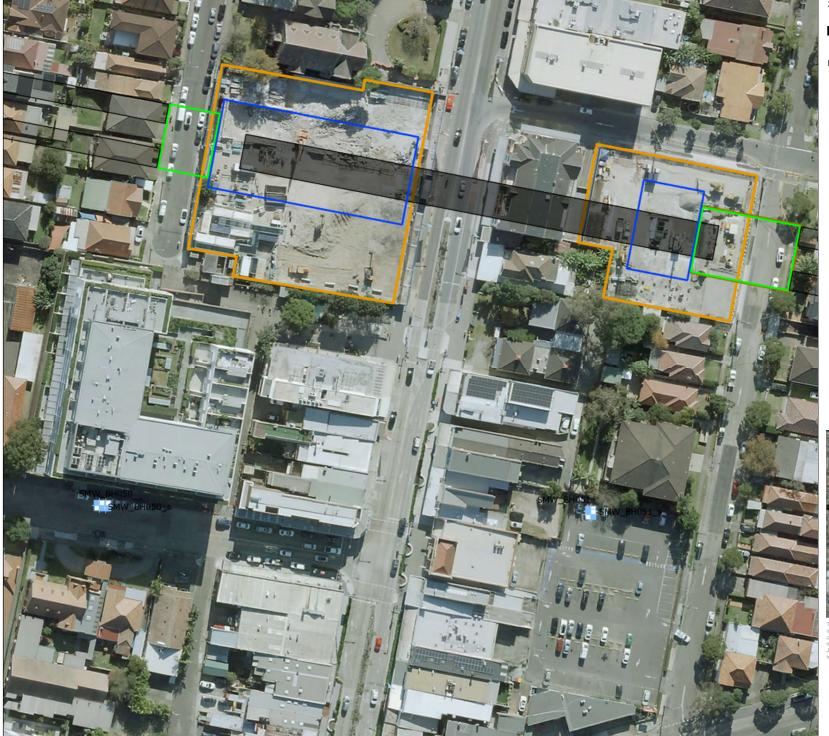

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions dream from such information are the responsibility of the user. Whale every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of relance on such information or data.

Tunnel - NST to BWD

- Legend
- Site Schedule Boundary / EPL
 - MONITORING
- Groundwater Wells

This map is shown for reference purposes only, Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user, Whale every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be helf responsible for any loss, damage or inconvenience caused as a result of reliance on such information of data.

Burwood North


```
Legend Site Schedule Boundary / EPL
```

- MONITORING
- Groundwater Wells

This map is shown for reference purposes only, Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user, Whale every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be helf responsible for any loss, damage or inconvenience caused as a result of reliance on such information of data.

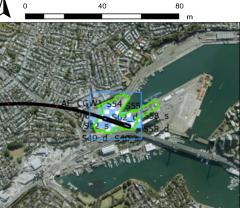
Five Dock

- Legend
- Site Schedule Boundary / EPL

MONITORING

Groundwater Wells

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.



The Bays

Site Schedule Boundary / EPL MONITORING

This map is shown for reference purposes only, Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user, Whale every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of relance on such information or data.

APPENDIX H - GROUNDWATER MONITORING DATA

Alk Image: Normal and the state of th	
	5
EQL 1 1 1 1 1 1 1 1 0.01 0.01 0.01 10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 1 0.0 0.0	/L μg/L μ
	5
AX2G (2013) Marine Water - Slightly to moderately disturbed ecosystems 44 ⁴² 4.4 ⁴² 0.1 ⁴¹ 0.1 ⁴¹ 7 ⁴¹ 7 ⁴¹ 7 ⁴¹	1 15 ^{#2}
NHMRC (2008) Recommended Recreational Guidelines - Aesthetic 2 500 ¹⁸ 2 500 ¹⁸ 2 1800 ¹⁹ 2 1800 ¹⁹ 2 6 6000 ¹⁸ 2 6 6000 ¹⁸ 2 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30000#3 30
NHMRC (2008) Recommended Recreational Guidelines - Health 2500 th 2500 th 2500 th 250 th 2000 th 200 th	

BUR_BH125	BUR_BH125	Normal	21/01/2022	98	142	274	4	566	2	13	456	24.5	20.5	8.83	1350	1.48	<0.01	0.26	3.8	-	3900		17		<0.1	-	<1		2		· ·	-	<]		- <	0.1	- 4	¥	-	<5
BUR_MW108	BUR-MW108	Normal	20/01/2022	<1	695	518	87	2310	125	27	1510	89.8	81	5.17	4910	0.41	0.02	< 0.01	2.6	-	2600	-	13	-	0.4		<1	-	4	-	60	-	<1		- <	0.1	- 2	8	-	15
S02	S02_d	Normal	20/01/2022	<1	270	126	15	767	24	28	554	29.6	27.5	3.7	2550	0.29	0.04	< 0.01	4.6	-	4600	•	1	-	<0.1	-	<1	-	2		440	-	<1		- <	0.1	- 2	2		<5
S06	506	Normal	20/01/2022	<1	418	102	26	457	30	33	376	23.4	21	5.42	1280	0.57	0.02	< 0.01	1	-	1000	-	2	-	< 0.1	-	<1	-	2	-	13,400	-	<1		- <	0.1	- 2	2		<5
\$40_D	\$40_d	Normal	19/01/2022	<1	70	680	325	8110	459	77	3640	244	214	6.55	15,000	1.07	< 0.1	< 0.1	2.2	-	2200	•	1	-	<0.1	-	<1		5	•	330,000	- 1	<1		• <	0.1	- 8	0	-	<5
\$40_\$	\$40_s	Normal	20/01/2022	<1	205	64	77	48	9	12	35	6.78	6.41	2.8	446	0.04	0.46	0.03	0.3	-	800	-	<1	-	0.3		<1	-	11	-	320	-	<1		- <	0.1	- 7	7	- 2	87
\$51	\$51	Normal	20/01/2022	<1	700	6	150	44	49	23	67	15.4	15	1.09	831	4.75	< 0.1	< 0.1	6.8		6800	•	65	-	<0.1	-	<1		<1	-	19,100		<1		- <	0.1	- <	1	-	<5
\$54	\$54	Normal	20/01/2022	<1	59	334	105	4650	279	90	2060	139	120	7.4	8360	0.64	<0.1	< 0.1	3.9	-	3900	-	2	-	< 0.1	-	<1	-	6	-	51,500	-	2		- <	0.1	- 2	2	-	6
SMW_BH019	D01_220119	Field_D	19/01/2022	<1	855	1	416	6510	365	43	2700	201	169	8.48	11,700	4.61	0.02	< 0.01	6.3	-	6300		<1	-	< 0.1	-	<1		2		5780	-	<1		- <	0.1	- 2	2	-	13
SMW_BH019	SMW_BH019	Normal	19/01/2022	<1	856	2	411	6580	358	43	2650	203	166	9.87	11,800	4.76	0.02	< 0.01	6.4	•	6400	-	<1	-	< 0.1	-	<1	-	2	-	5770	-	<1		- <	0.1	- 1	L I	-	14
annu puara	T01-220119	Interlab D	19/01/2022			· ·				-	-			-		· ·	-	-	5.6	0.08	5600	4	•	<0.2	-	7		16		11,000	1.1	5		<(0.1	- 9	э.		50	
SMW_BH019	101-220119	Internat_D	13/01/2022																																					
SMW_BH019 SMW_BH035	SMW_BH035	Normal	18/01/2022	<1	568	10	509	5610	364	45	2600	170	170	0.06	11,600	5.59	0.08	< 0.01	8.2	-	8300	-	<1	-	< 0.1	-	<1	-	4	-	340	-	<1		- <	0.1	- 2	6	-	30
		Normal		<1 <1	568 131			5610 1070		45 9	2600 814	170 43.2	170 43.6	0.06	11,600 4260	5.59 0.18	0.08	<0.01	8.2	-	8300 17,200	•	<1 <1	-	<0.1	-	<1 <1	-	4	-	340 4800	-	<1		- <	0.1	- 2 - 10	6)5		30 156
SMW_BH035	SMW_BH035	Normal	18/01/2022	<1 <1 163						45 9 10			170 43.6 36.2					<0.01 <0.01 1.01		-		-	<1 <1 <1	-		-	-	-	4 1 <1	-		-	<1 <1		- < - < - <	0.1	- 2 - 10 - <	6 05 1		
SMW_BH035 SMW_BH035_S	SMW_BH035 SMW_BH035_S SMW_BH038	Normal Normal	18/01/2022 18/01/2022	<1 <1 163 <1		500 291	63 272	1070	58	9	814	43.2	43.6	0.4 3.41	4260	0.18	0.06	<0.01 <0.01 1.01 <0.01	17.1	- - -	17,200	- - - -	<1 <1 <1 <1	-	<0.1	- - -	-	-	4 1 <1 2	-	4800	-	1> <1		- < - < - < - <	0.1 0.1 0.1	- 2 - 10 - < - 8	1	- 4	
SMW_BH035 SMW_BH035_S SMW_BH038	SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH051	Normal Normal Normal Normal	18/01/2022 18/01/2022 17/01/2022	<1 <1 163 <1 <1	131 208	500 291 421	63 272 24	1070 836	58 <1 85	9 10	814 514	43.2 33.8	43.6 36.2	0.4 3.41	4260 2430	0.18	0.06 <0.01	<0.01 <0.01 1.01 <0.01 <0.01	17.1 0.9		17,200 1900	- - -	<1 <1 <1 <1 <1	-	<0.1 <0.1	- - - -	-	-	4 1 <1 2 <1	- - - -	4800 <50	- - -	 <td></td><td>- d - d - d - d</td><td>0.1 0.1 0.1 0.1 0.1</td><td>- <</td><td>1 0</td><td>- 4 - 1</td><td> 56 <5</td>		- d - d - d - d	0.1 0.1 0.1 0.1 0.1	- <	1 0	- 4 - 1	 56 <5
SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH051	SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH051	Normal Normal Normal Normal	18/01/2022 18/01/2022 17/01/2022 18/01/2022	<1 <1 163 <1 <1	131 208 149	500 291 421	63 272 24	1070 836 1630	58 <1 85	9 10 18	814 514 1130	43.2 33.8 57.7	43.6 36.2 57.8	0.4 3.41 0.07	4260 2430 4100	0.18 0.61 0.19	0.06 <0.01 0.06	< 0.01	17.1 0.9 0.7	-	17,200 1900 800	• • •	<1 <1 <1 <1 <1 <1	-	<0.1 <0.1 <0.1	- - - -	-	-	4 1 <1 2 <1	-	4800 <50 530	- - - -	1 1		- < - < - < - < - < - <	0.1 0.1 0.1 0.1 0.1	- <	1 0	- 4 - 1	56 <5 .64
SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH051	SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH051 SMW_BH120	Normal Normal Normal Normal	18/01/2022 18/01/2022 17/01/2022 18/01/2022	<1 <1 163 <1 <1	131 208 149	500 291 421	63 272 24	1070 836 1630	58 <1 85	9 10 18	814 514 1130	43.2 33.8 57.7	43.6 36.2 57.8	0.4 3.41 0.07	4260 2430 4100	0.18 0.61 0.19	0.06 <0.01 0.06	< 0.01	17.1 0.9 0.7	-	17,200 1900 800	-	<1 <1 <1 <1 <1	-	<0.1 <0.1 <0.1	- - - -	-	-	4 -1 -2 -1	· · · · · · · · · · · · · · · · · · ·	4800 <50 530	- - -	<1		- < - < - < - < - <	0.1 0.1 0.1 0.1 0.1	- <	1 0	- 4 - 1	56 <5 .64
SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH051 SMW_BH120	SMW_BH035 SMW_BH035_S SMW_BH038 SMW_BH038 SMW_BH051 SMW_BH120	Normal Normal Normal Normal	18/01/2022 18/01/2022 17/01/2022 18/01/2022	<1 <1 163 <1 <1 <1	131 208 149	500 291 421 501	63 272 24	1070 836 1630	58 <1 85	9 10 18	814 514 1130 3360	43.2 33.8 57.7	43.6 36.2 57.8	0.4 3.41 0.07	4260 2430 4100	0.18 0.61 0.19	0.06 <0.01 0.06	< 0.01	17.1 0.9 0.7	1	17,200 1900 800	- - - -	<1 <1 <1 <1 <1 15	-	<0.1 <0.1 <0.1	1	-	- - - -	4 1 <1 2 <1 15	- - - -	4800 <50 530	- - - -	<1 <1 <1 <1 <1	1 · · · · · · · · · · · · · · · · · · ·		0.1 0.1 0.1 0.1 0.1 15	- <	1 0	- 4	56 <5 .64

Number of Results	15	15	15	15	15	15	15	15	15	15	15	15	12	15	12	10	1	16	1	12	1	15	1	15	1	15	1	14	1	15	1	12	1	15	1	15
Number of Detects	2	15	15	15	15	14	15	15	15	15	15	15	15	10	3	16	1	16	1	7	0	2	1	1	1	12	1	13	1	1	0	0	1	12	1	8
Minimum Concentration	<1	59	1	4	44	<1	9	35	6.78	6.41	0.06	446	0.04	< 0.01	< 0.01	0.3	0.08	800	4	<1	<0.2	<0.1	7	<1	16	<1	11000	<50	5	<1	<0.1	< 0.1	9	<1	50	<5
Minimum Detect	98	59	1	4	44	2	9	35	6.78	6.41	0.06	446	0.04	0.02	0.03	0.3	0.08	800	4	1	ND	0.3	7	14	16	1	11000	60	5	2	ND	ND	9	1	50	6
Maximum Concentration	163	856	680	509	8110	474	90	3640	244	214	9.87	15000	5.59	0.46	1.01	17.1	0.08	17200	4	65	<0.2	0.4	7	14	16	11	11000	330000	5	2	<0.1	< 0.1	9	105	50	456
Maximum Detect	163	856	680	509	8110	474	90	3640	244	214	9.87	15000	5.59	0.46	1.01	17.1	0.08	17200	4	65	ND	0.4	7	14	16	11	11000	330000	5	2	ND	ND	9	105	50	456
Average Concentration	18	400	255	182	3063	179	35	1498	100	90	4.5	6194	1.8	0.064	0.1	4.5		4663		7		0.09		1.4		3		31004		0.6		0.05		23		67
Median Concentration	0.5	270	274	105	1630	85	28	1130	57.7	57.8	3.75	4260	0.64	0.04	0.005	3.85	0.08	3900	4	0.5	0.1	0.05	7	0.5	16	2	11000	3395	5	0.5	0.05	0.05	9	2	50	6
Standard Deviation	47	294	229	168	2932	181	24	1235	86	75	3.3	5051	2	0.11	0.26	4.1		4079		17		0.11		3.5		2.8		87149		0.39		0		35		134
Number of Guideline Exceedances	0	0	0	0	6	0	0	6	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	1	11	1	7	1	0	0	0	1	6	1	5
Number of Guideline Exceedances(Detects Only)	0	0	0	0	6	0	0	6	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	1	11	1	7	1	0	0	0	1	6	1	5

Env Stds Comments #1:Apply LOSP 99 #3:ANHMRC (2011) Drinking Water Guidelines [2016] Aesthetic #3:Health Canada (2014) Guidelines for Canadian Drinking Water Quality #5:NHMRC (2011) Drinking Water Guidelines [2016] Health #6:WHO (2011) Drinking Water Quality

	Naphthalene			TRH	- Semi	ivolatil	e Fracti	ion						TRH V	olatiles	s/BTEX	ĸ				BTEX										Metals	5									
	Naph thalene	>C10 - C16 Fraction	>C10 - C16 Fraction minus Naphthalene (F2)	>C10 - C40 Fraction (sum)	>C16 - C34 Fraction	>C34 - C40 Fraction	- C14 Fraction	Ϋ́	C15 - C28 Fraction	- C2 -		Total Xylenes	Benzene	C6 - C10 Fraction	C6 - C10 Fraction minus BTEX (F1)	C6 - C9 Fraction	Ethylbenzene	meta- & para-Xylene	ortho-X	Sum of BTEX	Total MAH	Arsenic (Filtered)	Cadmium (Filtered)	Calcium	Calcium (Filtered)	Chromium (Filtered)	Cobalt (Filtered)	Copper (Filter	lron		Iron (Filtered)	Lead (Filtered)	Magnesium	Magnesium (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Phosphorus	Potassium	Potassium (Filtered)	Zinc (Filtered)	Manganese (Filtered)
	μg/L		µg/L		μg/L				ıg/L μ		:/L	µg/L	μg/L						µg/L	µg/L	mg/L	μg/L		mg/L	mg/L	μg/L	µg/I	L μg/l				μg/L	mg/L	mg/L		µg/L	mg/L	mg/L I	mg/L	μg/L	μg/L
EQL	1	50	50	100	100	100	50	50 1	100 5	0 1	L	2	1	20	20	20	1	2	1	1		1	0.1		1	1	1	1	50		50	1		1	0.1	1			1	5	1
ANZG (2018) Freshwater - Slightly to moderately disturbed ecosystems	16 ^{#2}									18	0#2		950 ^{#2}				80 ^{#2}	3	350#2			1342 24	2 0.243			1 ^{#2} 3.3	⁴ 1.4 ⁴	4 1.4 ⁴	2			3.4 ^{#2}			0.06#1	11#2				8 ^{#2}	1900*2
ANZG (2018) Marine Water - Slightly to moderately disturbed ecosystems	50 ^{#1}									18	0 ^{#2}		500#1				80 ^{#2}		350 #5				0.7**			4.4 127	^{#2} 1 ^{#2}	1.3*	2			4.4 ^{#2}			0.1"1	7 11				15 ^{#2}	80#4
NEPM (1999) HSL A&B Residential - Clay 2 to <4 m	NL		NL							N	IL	NL	5000		NL		NL																								
NEPM (1999) HSL A&B Residential - Clay 4 to <8 m	NL		NL							N	IL	NL	5000		NL		NL																								
NEPM (1999) HSL A&B Residential - Clay 8 m+	NL		NL							N	IL	NL	5000		NL		NL																								
NHMRC (2008) Recommended Recreational Guidelines - Aesthetic																						1							3000	0 ^{#7} 3	00087								3	30000*7	
NHMRC (2008) Recommended Recreational Guidelines - Health	700 **11									800	0 89 64	000#9	1049			24	000#9					10049	20#9			500 ^{#14}		20000	.#9			100*9			4.049	200 ^{#9}					5000*9

Field_ID Sampled_Date-Time Lab_Report_Number Sample_Type

D01_20220218	18/02/2022	ES2205703	Field_D	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1	-	<1	< 0.1	-	28	<1	127	2	1430	880	<1	- 1	74	<0.1	68	-	-	17	127	47,000
\$40_d	22/02/2022	ES2206020	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		<1	< 0.1	-	273	<1	-	<1	-	266,000	<1	- 1	401	< 0.1	56	-	-	80	5	
S51	22/02/2022	ES2206020	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		19	< 0.1	-	159	<1	•	<1		7950	<1	-	48	< 0.1	2	•	-	22	<5	•
S54	22/02/2022	ES2206020	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1	-	<1	< 0.1	-	107	<1	-	<1	-	50,000	<1	- 1	282	< 0.1	<1	•	-	90	6	
SMW_BH019	21/02/2022	ES2206020	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		<1	< 0.1	-	338	<1	-	<1	-	5060	<1	-	298	<0.1	2	-	-	38	38	-
SMW_BH035	18/02/2022	ES2205703	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		<1	< 0.1	-	568	1	3	<1	15,200	70	<1	-	368	<0.1	9	-	-	42	11	177
SMW_BH035_S	18/02/2022	ES2205703	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		<1	0.4	-	87	<1	95	2	8750	520	<1	-	47	<0.1	85			8	486	6090
SMW_BH038	18/02/2022	ES2205703	Normal	<1	<100 <1	.00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		<1	< 0.1	-	383	19	<1	3	330	<50	<1	-	<1	<0.1	<1	-	-	9	<5	<1
SMW_BH051	18/02/2022	ES2205703	Normal	<1	<100 <1	00 <10	0 <100	<100 <	50 <5	0 <100	<50	<2	<2	<1	<20	<20 <20) <2	<2	<2	<1		<1	<0.1	-	27	<1	125	1	1540	790	<1	- 1	72	<0.1	68	-	-	16	127	46,600
T01 20220218	18/02/2022	866521	Interlab D	<1	<50 <5	50 <10	0 <100	<100 <	50 <10	00 <100	<100	<1	<3	<1	<20	<20 <20) <1	<2	<1	-	< 0.003	2	< 0.2	25	-	<1		2	320	-	<1	84	1	<0.1	63	0.02	20		120	

Statistical Summary																																							
Number of Results	10	10	10	10	10	10 :	10 10	10	10	10	10	10	10	10	10	10	10	10	9	1	10	10	1	9	10	5	10	6	9	10	1	9	10	10	1	1	9	10	5
Number of Detects	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	9	2	4	5	6	8	0	1	8	0	8	1	1	9	8	4
Minimum Concentration	<1	<50	<50	<100 <	<100 <	100 <	50 <50) <100) <50	<1	<2	<1	<20	<20	<20	<1	<2	<1 <	1 <	0.003	<1	< 0.1	25	27	<1	<1	<1	320	<50	<1	84	<1	< 0.1	<1	0.02	20	8	<5	<1
Minimum Detect	ND	ND	ND	ND	ND I	ND N	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	1D	ND	2	0.4	25	27	1	3	1	320	70	ND	84	47	ND	2	0.02	20	8	5	177
Maximum Concentration	<1	<100	<100	<100 •	<100 <	100 <	50 <10	0 <100	<100	<2	<3	<1	<20	<20	<20	<2	<2	<2 <	<1 <	0.003	19	0.4	25	568	19	127	3	15200	266000	<1	84	401	< 0.1	85	0.02	20	90	486	47000
Maximum Detect	ND	ND	ND	ND	ND I	ND 1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	1D	ND	19	0.4	25	568	19	127	3	15200	266000	ND	84	401	ND	85	0.02	20	90	486	47000
Average Concentration	0.5	48	48	50	50	50 :	25 28	50	28	0.95	1.1	0.5	10	10	10 C	0.95	1 0	.95 0	0.5		2.5	0.09		219	2.4	70	1.3	4595	36811	0.5		177	0.05	35			36	93	19974
Median Concentration	0.5	50	50	50	50	50 3	25 25	50	25	1	1	0.5	10	10	10	1	1	1 0	0.5 0.	.0015	0.5	0.05	25	159	0.5	95	0.75	1485	880	0.5	84	74	0.05	32.5	0.02	20	22	24.5	6090
Standard Deviation	0	7.9	7.9	0	0	0	0 7.9	0	7.9	0.16	0.16	0	0	0	0 0	0.16	0 0	.16	0		5.8	0.11		185	5.8	64	0.92	6092	87429	0		158	0	35			30	149	24612
Number of Guideline Exceedances	0	0	10	0	0	0	0 0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	1	0	0	1	4	4	2	4	0	0	0	10	6	0	0	0	6	4
Number of Guideline Exceedances(Detects Only)	0	0	10	0	0	0	0 0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	1	0	0	1	4	4	2	4	0	0	0	0	6	0	0	0	6	4

Env Stds Comments

#1:Apply LOSP 99

#2:Apply LOSP 95

#3:Apply LOSP 95; 'Grading' guideline values published in the report Updating nitrate toxicity effects on freshwater aquatic species

#4:Apply LOSP Unknown #5:Apply Freshwater DGV (LOSP Unknown)

#6:Apply Freshwater LOSP Unknown

#7:NHMRC (2011) Drinking Water Guidelines [2016] Aesthetic

#8:US EPA (2012) Health Advisories for Drinking Water Contaminants

#9:NHMRC (2011) Drinking Water Guidelines [2016] Health

#10:Health Canada (2014) Guidelines for Canadian Drinking Water Quality

#11:EPHC (2008) Australian Guidelines for Water Recycling - Drinking Water #12:NHMRC (2011) Drinking Water Guidelines Health (Ver. 3.5)

#13:California EPA (2014) Public Health Goals for Drinking Water

#14:WHO (2011) Drinking Water Quality

#15:WHO (2020) Trichloroethene in drinking-water: Background document for development of WHO Guidelines for drinking-water quality. WHO/HEP/ECH/WSH/2020.10

Data Comments

#1 Reported Analyte LOR is higher than Requested Analyte LOR

	inity b	y PC Ti			м	NA 🛛			Nitrite and Nitrate as N	Total Phosphorus					In	organi	cs
	Carbonate Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Ferrous Iron - Fe2+	Methane	Sulphate	TDS	Ammonia as N	Nitrate (as N)	Nitrite + Nitrate as N	Total Phosphorus as P	Alkalinity (Hydroxide) as CaCO3	Alkalinity (total) as CaCO3	Anions Total	Cations Total	Chloride	lonic Balance	Sodium (Filtered)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	mg/L	%	mg/L
EQL	1	1	0.05	0.01		10	0.01	0.01	0.01	0.01	1	1	0.01	0.01	1	0.01	0.5
ANZG (2018) Freshwater - Slightly to moderately disturbed ecosystems								2.4 #1									
ANZG (2018) Marine Water - Slightly to moderately disturbed ecosystem	s																
NHMRC (2008) Recommended Recreational Guidelines - Aesthetic					2500#5	6000#5									2500#5		1800#5
NHMRC (2008) Recommended Recreational Guidelines - Health					5000#6										2500 ^{#6}		
Slightly to Moderately Disturbed Discharge Criteria for Estuarine Water										0.025 ^{#10}							

LocCode	Field_ID	Sampled_Date	Lab_Report																	
S40_S	\$40_\$	14-Mar-22	ES2208954	<1	45	295	-	-	15,500	0.85	< 0.01	<0.01	<u>0.19</u>	<1	45	202	195	6560	1.83	3350
S51	S51	14-Mar-22	ES2208954	<1	684	21.5	-	-	716	4	0.02	0.02	<u>0.58</u>	<1	684	15.6	15.7	55	0.44	55
S54	D01_2020314	14-Mar-22	ES2208954	<1	40	52.6	-	-	8540	0.73	< 0.01	<0.01	<u>1.52</u>	<1	40	119	114	3930	2.02	1950
S54	S54	14-Mar-22	ES2208954	<1	51	51.7	-	-	8530	0.75	< 0.01	<0.01	<u>1.49</u>	<1	51	120	115	3960	2.18	1970
S54	T01_20220314	14-Mar-22	878151	<10	<20	-	-	1800	9000	1.1	<0.02	-		<20	<20	-	-	3900	-	1900
SMW_BH019	SMW_BH019	15-Mar-22	ES2209170	<1	75	0.1	0.01	-	168	0.08	0.13	0.16	<u>0.76</u>	<1	75	3.17	2.16	12	19	16
SMW_BH035	SMW_BH035	16-Mar-22	ES2209368	<1	649	-	-	-	11,800	1.7	0.61	0.61	<u>1.11</u>	<1	649	172	150	5650	7	2190
SMW_BH035_S	SMW_BH035_S	16-Mar-22	ES2209368	<1	242	-	-	-	845	0.02	0.04	0.04	<u>0.44</u>	<1	242	10.5	10.5	52	0.11	200
SMW_BH038	SMW_BH038	15-Mar-22	ES2209170	<1	198	0.05	-	-	4600	1.92	< 0.01	<0.01	<0.02	<1	198	70.5	66.4	2150	2.95	1180
SMW_BH051	SMW_BH051	15-Mar-22	ES2211288	<1	57	0.05	-	-	398	1.24	-	0.25	<u>0.25</u>	<1	57	6.7	6.16	170	4.26	108
SMW_BH051_s	SMW_BH051_s	15-Mar-22	ES2211288	<1	56	0.3	-	-	388	0.01		0.16	0.02	<1	56	5.29	5.4	63	1.04	28
Sub-W1	Sub-W1	16-Mar-22	ES2209368	<1	775	-	<0.01	-	2750	0.25	0.14	0.14	<u>0.51</u>	<1	775	42.7	40.1	538	3.16	727
Statistical Summ	nary																			

Statistical Summary

Number of Results	12	12	8	2	1	12	12	10	11	11	12	12	11	11	12	11	12
Number of Detects	0	11	8	1	1	12	12	5	7	10	0	11	11	11	12	11	12
Minimum Concentration	<1	<20	0.05	<0.01	1800	168	0.01	< 0.01	<0.01	<0.02	<1	<20	3.17	2.16	12	0.11	16
Minimum Detect	ND	40	0.05	0.01	1800	168	0.01	0.02	0.02	0.02	ND	40	3.17	2.16	12	0.11	16
Maximum Concentration	<10	775	295	0.01	1800	15500	4	0.61	0.61	1.52	<20	775	202	195	6560	19	3350
Maximum Detect	ND	775	295	0.01	1800	15500	4	0.61	0.61	1.52	ND	775	202	195	6560	19	3350
Average Concentration	0.88	240	53			5270	1.1	0.097	0.13	0.63	1.3	240	70	65	2253	4	1140
Median Concentration	0.5	66	10.9	0.0075	1800	3675	0.8	0.015	0.04	0.51	0.5	66	42.7	40.1	1344	2.18	953.5
Standard Deviation	1.3	288	101			5251	1.1	0.19	0.18	0.54	2.7	288	73	68	2437	5.3	1116
Number of Guideline Exceedances	0	0	0	0	0	5	0	0	0	9	0	0	0	0	5	0	5
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	5	0	0	0	9	0	0	0	0	5	0	5

Env Stds Comments

#1:Apply LOSP 95; 'Grading' guideline values published in the report Updating nitrate toxicity effects on freshwater aquatic species #2:Apply LOSP 95 #3:Apply LOSP Unknown #4:Apply LOSP 99 #5:NHMRC (2011) Drinking Water Guidelines [2016] Aesthetic #6:Health Canada (2014) Guidelines for Canadian Drinking Water Quality #7:NHMRC (2011) Drinking Water Guidelines [2016] Health #8:WHO (2011) Drinking Water Quality #9:EPHC (2008) Australian Guidelines for Water Recycling - Drinking Water #10:Lowland Rivers #11:Estuaries #12:ANZECC (2000). Applied Canadian Value #13:99% species protection is recommended to account for bioaccumulation #14:Recommended for slightly to moderately disturbed ecosystems (to protect key species from chronic toxicity,95% protection).

											Met	als:							
	Sulfate as SO4 - Turbidimetric (Filtered)	Kjeldahl Nitrogen Total	Nitrite (as N)	Nitrogen (Total)	Arsenic (Filtered)	Cadmium (Filtered)	Calcium (Filtered)	Chromium (Fittered)	Copper (Filtered)	Iron (Filtered)	Lead (Filtered)	Magnesium (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Phosphorus	Potassium (Filtered)	Zinc (Filtered)	Aluminium (Filtered)	Selenium (Filtered)
	mg/L	mg/L		μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	µg/L	mg/L	μg/L	µg/L	mg/L		μg/L	μg/L	μg/L
EQL	1	0.1	0.01	100	1	0.1	0.5	1	1	50	1	0.5	0.1	1		0.5	5	10	10
ANZG (2018) Freshwater - Slightly to moderately disturbed ecosystems					13 ^{#2} 24 ^{#2}	0.2 #2		1 ^{#2} 3.3 ^{#3}	1.4 #2		3.4 #2		0.06 #4	11 ^{#2}				0.8 ^{#3} 55 ^{#2}	5 #4
ANZG (2018) Marine Water - Slightly to moderately disturbed ecosystem	5					0.7#4		4.4 ^{#2} 27 ^{#2}	1.3 ^{#2}		4.4#2		0.1 ^{#4}	7#4			15 ^{#2}		
NHMRC (2008) Recommended Recreational Guidelines - Aesthetic										3000#5							30000#5		
NHMRC (2008) Recommended Recreational Guidelines - Health					100 ^{#7}	20 ^{#7}		500 ^{#8}	20000#7		100#7		10 ^{#7}	200#7				2000#9	100#7
Slightly to Moderately Disturbed Discharge Criteria for Estuarine Water				350#11	13	0.2				300 ^{#12}			0.06#13	7#14			8		

LocCode	Field_ID	Sampled_Date	Lab_Report																			
S40_S	S40_S	14-Mar-22	ES2208954	790	1.2	< 0.01	1200	1	<0.1	309	<1	<1	243,000	<1	390	<0.1	<u>81</u>	-	74	<5	20	<10
S51	S51	14-Mar-22	ES2208954	17	5	< 0.01	<u>5000</u>	<u>80</u>	<0.1	183	<1	<1	<u>16,900</u>	<1	44	<u><0.1</u>	1	-	22	<5	10	<10
S54	D01_2020314	14-Mar-22	ES2208954	344	4	< 0.01	<u>4000</u>	2	<0.1	125	<1	<1	<u>40,600</u>	<1	254	<u><0.1</u>	5	-	84	<5	90	<10
S54	S54	14-Mar-22	ES2208954	366	3.7	< 0.01	<u>3700</u>	2	<0.1	125	<1	<1	<u>41,000</u>	<1	257	<u><0.1</u>	5	-	83	<5	70	<10
S54	T01_20220314	14-Mar-22	878151	-	-	-	<u>900</u>	2	<0.2	120	<1	<1	<u>5000</u>	<1	260	<u><0.1</u>	5	0.9	87	<5	-	-
SMW_BH019	SMW_BH019	15-Mar-22	ES2209170	64	1	0.03	<u>1200</u>	<u>27</u>	<0.1	18	<1	<u>4</u>		<1	5	<u><0.1</u>	4	-	6	<u>16</u>	-	-
SMW_BH035	SMW_BH035	16-Mar-22	ES2209368	11	5.8	< 0.01	<u>6400</u>	1	<0.1	561	<1	1	2010	<1	312	<u><0.1</u>	<u>21</u>	-	41	<u>26</u>	<10	<10
SMW_BH035_S	SMW_BH035_S	16-Mar-22	ES2209368	201	0.9	< 0.01	900	<1	<0.1	26	<1	<u>5</u>	80	<1	5	<0.1	5	-	4	<u>23</u>	140	<10
SMW_BH038	SMW_BH038	15-Mar-22	ES2209170	282	1.8	0.02	1800	4	<0.1	114	<1	<u>6</u>	-	<1	108	<0.1	2	-	21	<5	-	-
SMW_BH051	SMW_BH051	15-Mar-22	ES2211288	37	7.1	0.36	<u>7400</u>	<1	<0.1	14	<1	<u>7</u>	-	<1	8	<0.1	<u>10</u>	-	4	<u>51</u>	-	-
SMW_BH051_s	SMW_BH051_s	15-Mar-22	ES2211288	115	0.2	0.01	400	<1	<0.1	52	<1	2		<1	19	<0.1	6	-	1	<u>62</u>	-	-
Sub-W1	Sub-W1	16-Mar-22	ES2209368	579	2.4	< 0.01	<u>2500</u>	<1	<0.1	77	<1	<u>2</u>	<50	<1	52	<u><0.1</u>	9	-	14	<5	<10	<10
Statistical Summ	nary																					

Statistica	l Summary
------------	-----------

11 4 2 2 0.01 1 0.30	400 7400	12 8 <1 1 80 80	12 0 <0.1 ND <0.2 ND	12 12 14 14 561	12 0 <1 ND <1	12 7 <1 1 7	8 7 <50 80 243000	12 0 <1 ND <1	12 12 5 5 390	12 0 <0.1 ND <0.1	12 12 1 1 81	1 0.9 0.9 0.9	12 12 1 1 87	12 5 <5 16 62	7 5 <10 10 140	7 0 <10 ND <10
2 <0.0 2 0.0 1 0.3 1 0.3	1 400 400 7400		ND <0.2	14 14 561	ND <1	7 <1 1 7	80	ND	5 5	ND	1	0.9	1 1	16	10	<10 ND
2 0.03 1 0.30 1 0.30	400 7400		ND <0.2	14 561	ND <1	<1 1 7	80	ND	5 5 390	ND	1 1 81	0.9	1	16	10	ND
1 0.3 1 0.3	7400		<0.2	561	<1	1 7			5 390		1 81		1			
1 0.3	_			_	_	7	243000	<1	390	< 0.1	81	0.9	97	62	140	<10
	7400	80	ND	ECA							<u> </u>	0.5	0/	02		
				561	ND	7	243000	ND	390	ND	81	0.9	87	62	140	ND
0.04	1 2950	10	0.054	144	0.5	2.5	43577	0.5	143	0.05	13		37	16	49	5
4 0.00	5 2150	1.5	0.05	117	0.5	1.5	10950	0.5	80	0.05	5	0.9	21.5	2.5	20	5
3 0.1	2338	23	0.014	155	0	2.4	82377	0	141	0	22		35	21	53	0
0	12	2	0	0	0	6	6	0	0	12	4	0	0	5	3	7
0	12	2	0	0	0	6	6	0	0	0	4	0	0	5	3	0
-	0.00	0.005 2150 0.11 2338 0 12	0.005 2150 1.5 0.11 2338 23 0 12 2	0.005 2150 1.5 0.05 0.11 2338 23 0.014 0 12 2 0	0.005 2150 1.5 0.05 117 0.11 2338 23 0.014 155 0 12 2 0 0	0.005 2150 1.5 0.05 117 0.5 0.11 2338 23 0.014 155 0 0 12 2 0 0 0	0.005 2150 1.5 0.05 117 0.5 1.5 0.11 2338 23 0.014 155 0 2.4 0 12 2 0 0 0 6	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.11 238 23 0.014 155 0 2.4 82377 0 12 2 0 0 0 6 6	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 0.11 2338 23 0.014 155 0 2.4 82377 0 0 12 2 0 0 0 6 6 0	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 12 2 0 0 0 6 6 0 0	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.05 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 0 12 2 0 0 0 6 6 0 0 12	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.05 5 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 22 0 12 2 0 0 0 6 6 0 0 12 4	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.05 5 0.9 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 22 0 12 2 0 0 0 6 6 0 0 12 4 0	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.05 5 0.9 21.5 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 22 35 0 12 2 0 0 0 66 60 0 12 4 0 0	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.05 5 0.9 21.5 2.5 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 22 35 21 0 12 2 0 0 0 66 67 0 12 4 0 0 5	0.005 2150 1.5 0.05 117 0.5 1.5 10950 0.5 80 0.05 5 0.9 21.5 2.5 20 0.11 2338 23 0.014 155 0 2.4 82377 0 141 0 22 35 21 53 0 12 2 0 0 0 6 6 0 0 12 4 0 0 5 3

Env Stds Comments

#1:Apply LOSP 95; 'Grading' guideline values published in the report Upda #2:Apply LOSP 95 #3:Apply LOSP Unknown #4:Apply LOSP 99 #5:NHMRC (2011) Drinking Water Guidelines [2016] Aesthetic #6:Health Canada (2014) Guidelines for Canadian Drinking Water Quality #7:NHMRC (2011) Drinking Water Guidelines [2016] Health #8:WHO (2011) Drinking Water Quality #9:EPHC (2008) Australian Guidelines for Water Recycling - Drinking Wate #10:Lowland Rivers #11:Estuaries #12:ANZECC (2000). Applied Canadian Value #13:99% species protection is recommended to account for bioaccumulat #14:Recommended for slightly to moderately disturbed ecosystems (to pr

Sample	Date Sampled	Type of sample	Date extracted	Date analysed	Arsenic	Cadmium	Chromium	Copper	Cobalt	Mercury	Manganese	Nickel	Lead	Zinc	Iron	Phosphorus	Ammonia as N in water	Nitrate as N in water	Total Nitrogen in water
		Unit			µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	mg/L	mg/L	mg/L
S51	06/05/2022	Water	09/05/2022	10/05/2022	93	< 0.1	<1	<1	-	< 0.05	-	15	<1	11	27	0.6	4.5	0.005	4.7
S54	06/05/2022	Water	09/05/2022	10/05/2022	2	< 0.1	<1	<1	-	< 0.05	-	58	<1	18	52	0.1	0.79	0.006	0.9
S54	25/05/2022	Water	27/05/2022	28/05/2022	3	< 0.1	35	45	4	0.1	950	15	85	20	44000	0.2	1.8	<0.005	2.1
S54-R01	25/05/2022	Water	27/05/2022	28/05/2022	-	< 0.1	<1	<1	<1	< 0.05	<5	<1	<1	<1	<10	-	-	-	-
S55	25/05/2022	Water	27/05/2022	28/05/2022	2	< 0.1	3	4	<1	< 0.05	9	1	1	9	280	0.06	0.006	0.5	0.8

TRIGGER LEVELS ADOPTED

APPENDIX I HISTORICAL GROUNDWATER GAUGING DATA

CTP - Groundwater Level Monitoring

ID	Gauging Date	Site Identification	TOC Elevation (mAHD)	Ground Surface Elevation (mAHD)	Total Measured Depth (mbTOC)	Depth to LNAPL (mbTOC)	Depth to Water (mbTOC)	Corrected Depth to Water (mbgl)	Water Elevation (mAHD)	Comments
SMW_BH044	18/01/2022	Burwood	22.6	22.6	-	-	-	-	-	Unable to be accessed, car parked over well (Note left on car, but no response)
SMW_BH044	21/02/2022	Burwood	22.6	22.6	32.55	-	7.734	7.734	14.866	Car over majority of well. Clear, no odour
SMW_BH044 SMW_BH046	20/06/2022 18/01/2022	Burwood Burwood	22.6 6.47	22.6 6.47	32.5	-	7.9	7.9	- 14.7	No odour Lost/destroyed. Construction works likely paved over well
SMW_BH046	17/02/2022	Burwood	6.47	6.47	-	-	-	-	-	Lost/destroyed
SMW_BH046_s	18/01/2022	Burwood	6.47	6.47	2.887	-	1.702	1.702	4.768	Data logger and tubing in well, no odour
SMW_BH046_s	17/02/2022	Burwood	6.47	6.47	2.873	-	1.552	1.552	4.918	Tubing, data logger in well. No odour, minor brown sediment on probe
SMW_BH046_s	20/06/2022	Burwood	6.47	6.47	2.84	-	1.86	1.86	4.61	No odour
S02_d	20/01/2022	The Bays	3	3.11	15.3	-	2	2	1	Data logger and tubing in well. Approx. 0.9m taken off well depth and water level sue to TOC being elevated 0.9m from ground surface
S02_d S02_d	22/02/2022 14/03/2022	The Bays	3	3.11 3.11	-	-	-	-	-	Could not access due to constructions works Could not access due to constructions works
502_u \$02_s	20/01/2022	The Bays The Bays	2.99	3.11	-	-	-	-	-	Could not access (covered)
S02_s	22/02/2022	The Bays	2.99	3.11	-	-	-	-	-	Could not access due to constructions works
S02_s S06	14/03/2022 20/01/2022	The Bays The Bays	2.99 3.04	3.11 3.13	- 21.229	-	- 2.225	2.225	- 0.815	Could not access due to constructions works Water in well, depth to surface changed, re-surveyed
S06	22/02/2022	The Bays	3.04	3.13	-	-	-	-	-	Could not access due to constructions works
S06	14/03/2022	The Bays	3.04	3.13	-	-	-	-	-	Could not access due to constructions works
S40_d S40_d	20/01/2022 22/02/2022	The Bays The Bays	3.66 3.66	3.68 3.68	15.235 15.258	-	3.254 3.217	3.254 3.217	0.406	2x data loggers and tubing in well, no odour 2x data loggers
	14/03/2022	The Bays	3.66	3.68	15.082	-	3.021	3.021	0.639	2x data loggers, mislabelled in lab report as S40_s
S40_s S40_s	20/01/2022 22/02/2022	The Bays	3.49 3.49	3.6 3.6	4.34	-	1.699	1.699	1.791	Data logger and tubing in well. No odour
S40_s S40_s	14/03/2022	The Bays The Bays	3.49	3.6	-	-	-	-	-	Could not access due to constructions works Has been lost
\$51	20/01/2022	The Bays	4.01	4.15	5.899	-	3.361	3.361	0.649	No odour
S51	22/02/2022 14/03/2022	The Bays	4.01	4.15	5.818	-	3.701	3.701	0.309	Clear, no odour
\$51 \$51	6/05/2022	The Bays The Bays	4.01 4.01	4.15 4.15	5.783 5.8	-	3.391 3.57	3.391 3.57	0.619	Brown Tinge, no odour No odour
S51	25/05/2022	The Bays	4.01	4.15	5.77	-	3.51	3.51	0.5	No odour
\$54 \$54	20/01/2022 22/02/2022	The Bays	3.53 3.53	3.59 3.59	16.898 16.641	-	3.065 3.121	3.065 3.121	0.465	Data logger and tubing in well. Organic odour
\$54 \$54	14/03/2022	The Bays The Bays	3.53	3.59	16.561	-	2.845	2.845	0.409	Data logger, organic odour Dark brown silty
\$54	6/05/2022	The Bays	3.53	3.59	16.55	-	3.06	3.06	0.47	No odour
S54 SMW ENV21	25/05/2022 20/01/2022	The Bays	3.53 3.03	3.59 3.09	16.625	-	3.3	3.3	0.23	No odour Could not be accessed due to construction works
SMW_ENV21	22/02/2022	The Bays The Bays	3.03	3.09	-	-	-	-	-	Could not be accessed due to construction works
SMW_ENV21	14/03/2022	The Bays	3.03	3.1	-	-	-	-	-	Could not access due to constructions works
SMW_ENV21_s SMW_ENV21_s	20/01/2022 22/02/2022	The Bays	3.03 3.03	3.09 3.09	-	-	-	-	-	Could not be accessed due to construction works
SMW_ENV21_s	14/03/2022	The Bays The Bays	3.03	3.09	-	-	-	-	-	Could not access due to constructions works Could not access due to constructions works
SMW_BH051	18/01/2022	Five Dock	21.68	21.68	10.615	-	2.258	2.258	19.422	Tubing and two data loggers. No odour
SMW_BH051 SMW_BH051	17/02/2022 15/03/2022	Five Dock Five Dock	21.68 21.68	21.68 21.68	10.605 6.874	-	2.303 2.075	2.303	19.377 19.605	2x data loggers, no odour 2x data loggers, no odour
SMW_BH050	17/01/2022	Five Dock	24.34	24.34	26.008	-	23.181	23.181	1.159	Data logger in well, no odour
SMW_BH050	17/02/2022	Five Dock	24.34	24.34	26.029	-	23.19	23.19	1.15	Data logger, no odour
SMW_BH050_s SMW_BH050_s	17/01/2022 17/02/2022	Five Dock Five Dock	24.35 24.35	24.35 24.35	1.211	-	0.321 0.289	0.321	24.029 24.061	Data logger in well, no odour Water in gatic, grey sediment on probe, no odour
SMW_BH051_s	18/01/2022	Five Dock	21.66	21.66	1.811	-	Dry	Dry	-	Data logger in well. Well dry
SMW_BH051_s	17/02/2022	Five Dock	21.66	21.66	1.813	-	Dry	Dry	-	Dry, data logger
SMW_BH051_s SMW_BH009	15/03/2022 18/01/2022	Five Dock North Strathfield	21.66 18.45	21.66 18.45	1.8 33.23	-	1.269 30.581	1.269 30.581	20.391	Data logger, no odour Data logger in well, no odour
SMW_BH009	17/02/2022	North Strathfield	18.45	18.45	42.952	-	30.536	30.536	-12.086	Data logger present. Clear, no odour
SMW_BH009	16/03/2022	North Strathfield	18.45	18.45	43.046	-	30.5	30.5	-12.05	Data logger present. Clear, no odour
SMW_BH009_s	17/01/2022	North Strathfield	18.6	18.6	4.933	-	3.692	3.692	14.908	Water in casing, data loger and tubing in well. No odour
SMW_BH009_s	17/02/2022	North Strathfield North	18.6	18.6	4.92	-	3.72	3.72	14.88	Water in gatic, data logger and tubing. Clear, no odour
SMW_BH009_s	16/03/2022	Strathfield	18.6	18.6	4.916	-	3.175	3.175	15.425	Tubing, data logger present in well.No odour.
SMW_BH035	18/01/2022	North Strathfield	26.74	26.74	42.24	-	35.551	35.551	-8.811	Data logger in well
SMW BH035	18/02/2022	North	26.74	26.74	50.981	_	35.355	35.355	-8.615	Data logger, no odour
SMW_BH035	16/03/2022	Strathfield North Strathfield	26.74	26.74	35.259	-	35.259	35.259	-8.519	Data logger, no odour
SMW_BH035_s	18/01/2022	North Strathfield	26.62	26.62	2.7	-	1.589	1.589	25.031	Data logger in well, no odour
SMW_BH035_s	18/02/2022	North Strathfield	26.62	26.62	2.698	-	1.498	1.498	25.122	Data logger, no odour
SMW_BH035_s	16/03/2022	North Strathfield	26.62	26.62	1.431	-	1.25	1.25	25.37	Data logger, no odour
SMW_BH038	17/01/2022	North Strathfield	9.91	9.91	25.21	-	12.658	12.658	-2.748	Data logger in well
SMW_BH038	18/02/2022	North Strathfield	9.91	9.91	34.309	-	12.548	12.548	-2.638	Data logger. No odour
SMW_BH038	15/03/2022	North Strathfield	9.91	9.91	34.193	-	12.494	12.494	-2.584	Data logger. No odour
SMW_BH015	21/01/2022	Sydney Olympic Park	22.94	22.94	29.622	-	15.489	15.489	7.451	Data logger in well, no odour, minor silt on IP
SMW_BH015_s	21/01/2022	Sydney Olympic Park	22.02	22.02	2.579	-	Dry	Dry	-	Data logger in well, Dry
SMW_BH019	19/01/2022	Sydney Olympic Park	17.33	17.33	26.365	-	14.452	14.452	2.878	Data logger, organic odour
SMW_BH019	21/02/2022	Sydney Olympic Park	17.33	17.33	26.278	-	13.37	13.37	3.96	Data logger, organic odour
SMW_BH019	15/03/2022	Sydney Olympic Park	17.33	17.33	26.08	-	14.07	14.07	3.26	Data logger, organic odour
SMW_BH120	19/01/2022	Sydney Olympic Park	17.38	17.38	22.034	-	16.943	16.943	0.437	Data logger, organic odour
SMW_BH120	21/02/2022	Sydney Olympic Park	17.38	17.38	-	-	-	-	-	Did not have permit to access well during this round of monitoring

SMW_BH120	16/03/2022	Sydney Olympic Park	17.38	17.38	-	-	-	-	-	Did not have permit to access well - and consistent vehicle traffic on top of well
SMW_BH68_s	21/01/2022	Sydney Olympic Park	23.36	23.36	3.68	-	Dry	Dry	-	Data logger, tubing in well. Dry, no odour
SMW_BH068_s	21/02/2022	Sydney Olympic Park	23.36	23.36	-	-	-	-	-	Storage crate ontop of well, could not access
SMW_BH068_s	16/03/2022	Sydney Olympic Park	23.36	23.36	-	-	-	-	-	Storage crate ontop of well, could not access
SMW_BH040	18/01/2022	Tunnel - NS to B	23.06	23.06	60	-	24.01	24.01	-0.95	Data logger in well, one bolt missing, depth of well greater than IP length. No odour
SMW_BH040	17/02/2022	Tunnel NS to B	23.06	23.06	60	-	24.196	24.196	-1.136	1x bolt missing, data logger, depth greater than IP (60+), no odour
SMW_BH040	15/03/2022	Tunnel NS to B	23.06	23.06	60	-	22.416	22.416	0.644	1x bolt missing, data logger, no odour
SMW_BH040	20/06/2022	Tunnel NS to B	23.06	23.06	60	-	24.39	24.39	-1.33	No odour

Notes: mAHD mbgl mbTOC m

metres Australian Height Datum metres below ground level metres below top of casing metres