

ACOUSTICS ADVISOR ENDORSEMENT SYDNEY METRO WEST (SSI 10038)

Review of	Central Tunnelling Package: Bi-Annual Construction Monitoring Report July – December 2024	Reviewed document reference:	AFJV Bi-Annual Construction Monitoring Report – July 2024 – December 2024
by:	, Alternate Acoustics Advisor		SMWSTCTP-AFJ-1NL-EN-RPT-000028 Revision 01 dated 12 February 2025.
Date of issue:	21 February 2025		

As approved Alternate Acoustics Advisor (AA) for the Sydney Metro West project, I reviewed the noise and vibration components of a previous revision of this monitoring report.

Throughout the period of this report, I attended joint monitoring, and I also reviewed and commented on the results of noise and vibration monitoring done by AFJV as it took place.

From my observations during joint monitoring and the satisfactory responses to my comments on monitoring as it took place, I have a high level of confidence in the noise and vibration results presented in this report, and I endorse it.

Metro West Alternate Acoustics Advisor

DOCUMENT APPROVAL

	Prepared By	Reviewed By	Approved By
Name:			
Position:	Senior Environmental Coordinator	Project Environmental Manager	Operational Services Director
Date:	29/01/2025	29/01/2025	29/01/2025

Revision History

Rev:	Date:	Pages:	Ву:	Description:
00	29/01/2025	All	Various	Preparation of Bi-annual monitoring report
01	12/02/2025	Table 4B		Updated in response to ER and Metro Comments

Table of Contents

D	Document Approval	2
С	COMPLIANCE MATRIX	5
1.	1. INTRODUCTION	7
2.	2. NOISE AND VIBRATION	7
	2.1 MONITORING LOCATIONS	8
	2.1.1 ATTENDED MONITORING	8
	2.1.2 UNATTENDED MONITORING	8
	2.2 NOISE AND VIBRATION MONITORING RESULTS	8
	2.2.1 ATTENDED NOISE AND VIBRATION MONITORING	8
	2.2.2 UNATTENDED NOISE AND VIBRATION MONITORING	
	2.2.3 GROUND-BORNE NOISE AND VIBRATION MONITORING	9
	2.2.4 JOINT NOISE MONITORING	12
	2.2.5 PLANT SOUND POWER LEVELS	13
	2.2.6 MITIGATION MEASURE IMPLEMENTATION	13
	2.2.7 TRAFFIC NOISE REVIEW	13
	2.3 NOISE AND VIBRATION COMPLAINTS	14
	2.4 CONCLUSION	14
3.	3. SURFACE WATER	16
	3.1 MONITORING SITES	16
	3.2 SURFACE WATER QUALITY CRITERIA	
	3.3 RAINFALL DATA	17
	3.4 SURFACE WATER QUALITY RESULTS	
	3.5 FIELD OBSERVATIONS	18
	3.6 CONCLUSION	18
4.	4. GROUNDWATER	19
	4.1 GROUNDWATER MONITORING LOCATIONS	19
	4.2 FIELD INVESTIGATION	20
	4.2.1 GROUNDWATER MONITORING METHODOLOGY	20
	4.2.2 GROUNDWATER SAMPLING AND GAUGING	20
	4.2.3 GROUNDWATER MONITORING WELL STATUS	21
	4.2.4 FIELD OBSERVATIONS	22
	4.3 GROUNDWATER WATER QUAILITY	22
	4.3.1 TRIGGER VALUES	23
	4.3.2 LABORATORY RESULTS ANALYSIS	23
	4.4 GROUNDWATER LEVELS	25
	4.5 WATER TREATMENT PLANTS	26
	4.6 CONCLUSION	
Αl	APPENDIX A - NOISE MONITORING LOCATIONS AND RESULTS	30
	APPENDIX A (i) – ATTENDED NOISE MONITORING EXAMPLES	31

APPENDIX A (ii) – SOUND POWER LEVELS	32
APPENDIX A (iii) – RESULTS	33
APPENDIX A (iv) – CALIBRATION RECORDS	34
APPENDIX B - VIBRATION MONITORING LOCATIONS AND RESULTS	35
APPENDIX C - SURFACE WATER MONITORING	36
APPENDIX D - GROUNDWATER MONITORING	37
APPENDIX E – WTP SAMPLING AND DISCHARGE REGISTER	38

COMPLIANCE MATRIX

Condition Reference	Condition Requirement	Reference
C14	The following Construction Monitoring Programs must be prepared in consultation with the relevant government agencies identified for each to compare actual performance of construction of Stage 1 of the CSSI against the performance predicted in the documents listed in Condition A1 of this schedule or in the CEMP : (a) Noise and vibration Monitoring program; consult with EPA, SOPA (in respect of Sydney Olympic Park), Place Management NSW (in respect of The Bays) and Relevant Council(s) (b) Blasting Monitoring program; consult with SOPA (in respect of Sydney Olympic Park), Place Management NSW (in respect of The Bays) and Relevant Council(s) (c) Surface water quality Monitoring program; consult with DPE Water, Relevant Council(s) and Sydney Water (if any Sydney Water assets are impacted) (d) Groundwater Monitoring program; consult with DPE Water and SOPA (in respect of Sydney Olympic Park)	Section 3 of the Surface Water Monitoring Program (SMWSTCTP-AFJ-1NL-PE-PRG- 000001) Section 3 of the Groundwater Monitoring Program (SMWSTCTP-AFJ-1NL-PE-PLN- 000006)
	Note: The Blasting Construction Monitoring Program is only required to be prepared if blasting is proposed to be conducted during construction.	
C15	Each Construction Monitoring Program must provide: (a) details of baseline data available including the period of baseline monitoring; (b) details of baseline data to be obtained and when; (c) details of all monitoring of the project to be undertaken; (d) the parameters of the project to be monitored; (e) the frequency of monitoring to be undertaken; (f) the location of monitoring; (g) the reporting of monitoring results and analysis results against relevant criteria; (h) details of the methods that will be used to analyse the monitoring data; (i) procedures to identify and implement additional mitigation measures where the results of the monitoring indicated unacceptable project impacts; (j) a consideration of SMART principles; and (k) any consultation to be undertaken in relation to the monitoring programs; and (l) any specific requirements as required by Conditions C16 to C17 of	Section 3 of the Noise and Vibration Monitoring Program (SMWSTCTP-AFJ-1NL-NV-PLN-000001) Section 3 of the Surface Water Monitoring Program (SMWSTCTP-AFJ-1NL-PE-PRG-000001) Section 3 of the Groundwater Monitoring Program (SMWSTCTP-AFJ-1NL-PE-PLN-000006)
C16	this schedule. The Noise and Vibration Construction Monitoring Program and Blasting Construction Monitoring Program must include: (a) noise and vibration monitoring determined in consultation with the AA to confirm the best-achievable construction noise and vibration levels with consideration of all reasonable and feasible mitigation and management measures that will be implemented; (b) for the purposes of (a), noise monitoring must be undertaken during the day, evening and night-time periods and within the first month of work as well as throughout the construction period and cover the range of activities being undertaken at the sites; and (c) a process to undertake real time noise and vibration monitoring. The results of the monitoring must be readily available to the construction team, the Proponent, ER and AA. The Planning Secretary and EPA must be provided with access to the results on request.	Section 3 of the Noise and Vibration Monitoring Program (SMWSTCTP-AFJ-1NL-NV-PLN- 000001)

C17	Groundwater Construction Monitoring Program must include: (a) groundwater monitoring networks at each construction excavation site; (b) detail of the location of all monitoring bores with nested sites to monitor both shallow and deep groundwater levels and quality; (c) define the location of saltwater interception monitoring where sentinel groundwater monitoring bores will be installed between the saline sources of the estuary or river and that of the stations or shafts; (d) results from existing monitoring bores; (e) monitoring and gauging of groundwater inflow to the excavations, appropriate trigger action response plan for all predicted groundwater	Section 3 of the Groundwater Monitoring Program (SMWSTCTP-AFJ-1NL-PE-PLN- 000006)
	impacts upon each noted neighbouring groundwater system component for each excavation construction site; (f) trigger levels for groundwater quality, salinity and groundwater drawdown in monitoring bores and / or other groundwater users; (g) daily measurement of the amount of water discharged from the water treatment plants; (h) water quality testing of the water discharged from treatment plants; (i) management and mitigation measures and criteria; (j) groundwater inflow to the excavations to enable a full accounting of the groundwater take from the Sydney Basin Central Groundwater Source; and (k) reporting of groundwater gauging at excavations, groundwater monitoring, groundwater trigger events and action responses; and (l) methods for providing the data collected to Sydney Water where	
C23	discharges are directed to their assets. The results of the Construction Monitoring Programs must be submitted to the Planning Secretary, ER and relevant regulatory agencies, for information in the form of a Construction Monitoring Report at the frequency identified in the relevant Construction Monitoring Program. Note: Where a relevant CEMP Sub-plan exists, the relevant Construction Monitoring Program may be incorporated into that CEMP Sub-plan.	This Report

1. INTRODUCTION

This bi-annual monitoring report (B-ACMR) has been prepared to address the Condition of Approval (CoA) C23 of the planning approval for Sydney Metro West – Concept and Stage 1. The B-ACMR presents monitoring data for the reporting period for all works undertaken on the Sydney Metro West Central Tunnelling Package (CTP) from **01**st of July **2024** to **31**st **December 2024**. This is the sixth B-ACMR prepared for the CTP.

This report presents results from the construction phase of the monitoring programs and compares the results against established baseline data where available. There is a large amount of noise and vibration data from the unattended monitors, therefore, examples of data have been provided to demonstrate the monitoring which occurred during the period. Groundwater and surface water data will be provided in full. This report primarily highlights and discusses exceedances of the required criteria and shows other results demonstrating compliance.

In accordance with each Construction Monitoring Program, the is made available to relevant authorities within 40 business days of the ending of the monitoring period.

During the reporting period the CTP has seen significant progression, achieving several milestones including the completion of TBM tunnelling in October 2024 marking the projects transition into the demobilisation phase as it approaches completion. This milestone also signifies the resolution of a number of the project's critical environmental risks, including ground-borne noise and vibration impacts on the community, as well as the potential for groundwater drawdown. As the project approaches the completion of works associated with Stage 1 of the CSSI, as outlined in the documents specified in Condition A1 of Schedule 3, monitoring activities will be gradually scaled back to align with current site works. This process follows a risk-based approach. Each monitoring program now includes a rationale that establishes an end date for its specific monitoring requirements. These rationales have been reviewed and approved by Sydney Metro, the project's Environmental Representative, and the Acoustic Advisor. Consequently, they will be incorporated into all future B-ACMRs.

2. NOISE AND VIBRATION

The Noise and Vibration Management Plan (NVMP) aims to identify the potential impacts of CTP works on noise and vibration within the local environments surrounding the construction sites. The data presented in the B-ACMR has been prepared in accordance with CoA 16 and 23 of the Project Planning Approval, which requires reporting the results of CTP works to the Planning Secretary, the Environmental Representative (ER) and relevant regulatory agencies.

The report details the results of the construction phase of the NVMP. This report compares the noise and vibration criteria against monitoring data recorded during the reporting period.

All noise and vibration monitoring conducted by AFJV throughout the reporting period was executed in strict compliance with the methodology, calibration requirements and standard stipulated in the Noise and Vibration Monitoring Program (NVMoP).

It is noted that the metric of 'Compliance' identified in the Appendix A Noise Register is a fluid term which refers to a noise monitoring events determination based on several monitoring caveats when assessed against the project approvals, requirements, and licences. However generally, a noise monitoring events 'compliance' is assessed by comparing the following inputs:

- Was NML exceeded during monitoring period?
- Was DNVIS prediction exceeded during monitoring period?
- Was exceedance/s the result of AFJV works?
- Are all reasonable and feasible mitigation measures implemented?
 - o (if 'No' potential NCR to be raised, discuss with Environment Manager)

Implementation of any works specific mitigation measures is also considered when determining a monitoring events compliance.

2.1 MONITORING LOCATIONS

2.1.1 ATTENDED MONITORING

Attended noise monitoring was completed using a handheld sound level meter fixed to a tripod. Noise monitoring was completed as required, generally for verification purposes for noise impacts associated with Out of Hours Works (OOHW), Detailed noise and vibration impact statement (DNVIS) verification and to confirm the A-weighted sound power level (SWL) for plant being used during daytime hours. Attended monitoring results are provided in Appendix A. The LAeq noise levels captured by these monitors include both constructions related activities and extraneous noise sources.

It should be noted that the duration of each monitoring event is 15 minutes unless stated otherwise. On occasion shorter durations of noise monitoring was conducted at source point locations.

No attended vibration monitoring was completed during this reporting period. This has been due to the stage of work at each site noting there was minimal surface works and no vibration intensive surface works in the reporting period and unattended monitors (for ground borne vibration) being placed in residents' homes.

2.1.2 UNATTENDED MONITORING

Unattended noise and vibration monitoring throughout this report was undertaken in accordance with CTP's Noise and Vibration Management Plan (NVMP), Noise and Vibration Monitoring Program (NVMoP) and Detailed Noise and Vibration Impact Statement (DNVIS). Monitoring occurs on a 24-hour basis throughout the reporting period using noise and vibration loggers deployed at each of the CTP construction sites to obtain real time data as per CoA C16c.

Examples of unattended noise monitoring data for Five Dock, Burwood North, North Strathfield, Sydney Olympic Park and The Bays are provided in Appendix A. The locations of and several examples of real time monitoring set-ups for unattended noise are also provided in Appendix A.

2.2 NOISE AND VIBRATION MONITORING RESULTS

2.2.1 ATTENDED NOISE AND VIBRATION MONITORING

During this reporting period, 119 attended noise monitoring events were conducted at various locations near the project's construction sites. Of these events, several readings above NML and/or predicted noise levels were identified. In most cases, non-construction-related activities were observed to be responsible for the elevated noise results. During this reporting period, attendant monitoring for OOHW and DNVIS verification largely resulted in levels below the relevant NML or in line with predicted values.

One example of noise levels potentially exceeding the predicted level was observed during the monitoring of a tower crane operating at TBY outside of standard hours. AFJV conducted a series of noise monitoring sessions during the evening and night-time periods to determine the noise levels of the tower crane. However, due to the presence of ship movements and urban hum, the noise level of the tower crane was determined to have in impact similar to that of the background levels of the area.

The project Acoutic Advisor (AA) and Sydney Metro (SM) conducted joint noise monitoring on 21 November 2024 while the ship was present, and the recorded noise level was attributed to both the ship and the tower crane. The joint monitoring also confirmed that the noise level of the tower crane was inaudible when the crane's engine was facing away from the monitoring location. However, the noise level of the tower crane was audible when the engine was facing the monitoring location. The project AA and SM recommended implementing additional mitigation measures to minimise the noise level of the tower crane. AFJV pursued the

implementation of additional mitigation measures around the tower crane which required a temporary works design. However, due to the short duration of tower crane works, the long lead time of the materials to implement the temporary design, the mitigation installations could not be feasibly achieved prior to completion of the use of the tower crane. The tower crane works were completed on 16 December 2024 (with demobilisation planned for mid January 2025).

2.2.2 UNATTENDED NOISE AND VIBRATION MONITORING

Unattended noise monitor locations and data can be found in Appendix A. Weekly meetings with the environmental team are held to review the data for any anomalies. Despite the meeting, it is difficult to identify the source of all elevated data points considering the significant volume of data collected throughout the 6 months (ie over 970,000 data points). As unattended monitoring is ongoing, the data is only assessed in weekly meetings and on a case-by-case basis such as in response to complaints or to ensure compliance with OOHW models. Appendix A provides examples of unattended monitoring data, the data is presented in weekly periods extracted from each month for each site.

Unattended vibration monitoring was conducted continuously at a number of sites across CTP including; Burwood (, Sydney Olympic Park (, Five Dock (1 , Sydney Olympic Park (, Throughout the reporting period, 3 vibration spikes were recorded and investigated as outlined below.

- A spike of 18.1mm/s was recorded on 18 July 2024 on the SOP vibration unit located in SOP. The spike was caused by the AFJV Environmental Advisor whilst checking monitors at 15:56 and was not a result of AFJV works. No further action was required.
- Monitoring of the 110 Great North Rd property adjacent to Five Dock site recorded a spike of 281mm/s on the 16 September 2024 at 16:26. The spike was determined to be the AFJV Environmental Advisor swapping vibration monitor batteries and was not a result of AFJV works. No further action was required.
- Monitoring of the unit at 10 Herb Elliot Drive, Sydney Olympic Park recorded a spike of 28.6mm/s on the 2 October 2024 at 16:12. The spike occurred when the AFJV Environmental Advisor swapped the vibration monitor batteries and was not a result of AFJV works. No further action was required.

All other unattended vibration monitoring was recorded below site criteria and was compliant. Several examples of real time unattended vibration monitoring data are provided in Appendix B.

2.2.3 GROUND-BORNE NOISE AND VIBRATION MONITORING

Ground-borne noise and vibration (GBN) monitoring was conducted throughout this reporting period in accordance with ICNG section 4.2, CTP's Noise and Vibration Management Plan (NVMP), Noise and Vibration Monitoring Program (NVMoP), and Detailed Noise and Vibration Impact Statement (DNVIS). GBN monitoring requires installation of the monitors within affected properties. Based on the TBM's progression and GBN modelling, the AFJV community team approached potentially affected properties to offer alternative accommodation and monitoring prior to the impact occurring.

All monitoring was conducted using Svan958AG monitoring devices, equipped with a microphone for noise and a tri-axial geophone for vibration. During the reporting period, two ground-borne noise and vibration monitoring events were conducted along the tunnel/cross passage alignment between North Strathfield and Olympic Park station boxes.

One monitoring event was related to cross passage works, and the other was conducted for TBM excavation. A summarised table of monitoring events can be found in Table 2-A. Only nighttime results were considered because this is an unattended monitor. During the daytime, it is challenging to distinguish between activities within the monitored premises and construction activities. In order to maintain privacy of the residents, AFJV

does not record real time audio of ground borne noise data collected.

Table 2-A Ground Borne Noise and Vibration Monitoring locations and results.

Location	ТВМ/ХР	Date	Noise Results (dB)	Predic ted Noise (dB)	Vibration Results (mm/s)	Predicted Vibration (mm/s)	Comments
, North Strathfield	ТВМ	01-July-24	29.7-30.3	40	0.058	0.3	Context of Monitoring: Works included TBM 3 & 4 cutting. Specifically: - TBM3 was at, North Strathfield on 02/07/2024 TBM4 was at 3, North Strathfield on 02/07/2024 Morth Strathfield is approx. 57 off TBM alignment. Results: Vibration Dose value (VDV) below prediction and Vibration Management Level (VML). Peak Particle Velocity (PPV) below criteria for unreinforced or light framed structures. The recorded levels during TBM operation were below the noise prediction.
North Strathfield	XP 44	5-August-24	40-42.1	39	0.011	0.13	Context of Monitoring: Monitoring occurred concurrently with XP44 excavation, hammering and bolting. Results: Vibration peaks did not align with the detected noise levels. Given that the monitor is positioned next to a window, the elevated readings could be associated with either road activities or events within the residence. While the values recorded were higher than predicted, they remained below trigger for Alternative Accommodation offering. The recorded levels during XP excavating were higher than the noise prediction by approximately 1-3 dBA, which was attributed to nonconstruction-related activities.

Each monitoring event was analysed upon completion and a report developed. The reports were then provided to Sydney Metro, the AA and the ER to assess. Additionally, a summary report was provided to the property owner.

Over the reporting period, no impacts were observed. All recorded values fell below the trigger levels for unreinforced or light framed structures as specified in the NVMP, posing no risk of damage to surrounding buildings. This aligns with the construction vibration values set out in BS 7385 Part 2-1993, 'Evaluation and Measurement for Vibration in Buildings Part 2'.

The results of ground-borne noise and vibration during the reporting period for AFJV works were below the predicted values from the modelling as shown in Table 2-A above. However, the noise data for the monitor located at 1/84 Concord Ln, North Strathfield, exceeded the predicted value due to non-construction related activity as detailed in the table.

2.2.4 JOINT NOISE MONITORING

During the reporting period, five joint noise monitoring sessions were conducted around the CTP sites during the evening and night-time periods. No major actions were recorded; however, minor issues were identified by AA and SM. AFJV responded to all issues and resolved them within an appropriate timeframe, as shown in the table 2-B below.

Table 2-B Summary of joint monitoring events.

<u>Date</u>	Locat ion	<u>Names</u>	DNVIS/ OOHW	<u>Action</u>	AFJV response
10/07/2024	BWD	AFJV, AA, SM	оонw	Tonal movement alarm on excavator to be replaced with non-tonal alarm (squawker), or excavator replaced for one with a squawker prior to next shift	AFJV contacted the subcontractor to replace the excavator for the next shift, which was confirmed. Photos were sent to AA and SM to confirm that the excavator had been replaced.
20/08/2024	BWD, TBY	AA, SM, AFJV	OOHW	No action, AFJV's work complied with the predicted values	N/A
19/09/2024	BWD, NST	AA, SM, AFJV	ООНЖ	AFJV to have the breakdown of the roller door onto Burton St at Burwood North fixed as soon as practicable or implement a protocol for manually closing and opening the door.	AFJV took action and fixed the roller door, informing the AA on 23/09/2024.
29/10/2024	SOP	AA, SM, AFJV	DNVIS	No action, AFJV's work complied with the predicted values	N/A
21/11/2024	ТВУ	AA, SM, AFJV	DNVIS	Investigate the implementation of additional mitigation to the tower crane (including acoustic shield around the muffler and engine block)	AFJV investigated the potential for installing additional mitigation around the muffler and engine. AFJV commenced the temporary works design around the tower crane engine (not implemented due to time frame for design and procurement). Tower crane completed works on site 16 December 2024.
05/12/2024	TBY, NST	AA, ER, SM, AFJV	DNVIS	Investigate the implementation of additional mitigation to the crane (including acoustic shield around the muffler and engine block)	AFJV investigated the potential for installing additional mitigation around the muffler and engine. AFJV commenced the temporary works design around the tower crane engine (not implemented due to time frame for design and procurement lead times). Tower crane completed works on site 16 December 2024.

2.2.5 PLANT SOUND POWER LEVELS

In accordance with the NVMP, DNVIS and CNVS, AFJV conducted a number of sound power measurement checks to ensure all the plant and equipment operating on CTP maintained a sound power level (SWL) within acceptable limits, as defined in Table 13 of the CNVS. In accordance with Section 4 of the CNVS, special attention was given to items of plant with predicted loudness of 105dB(A) or more. Regular noise checks, of all high-risk plant were conducted upon arrival at the site.

Measurements were conducted in line with Australian and ISO standards AS2012–1990, ISO 9614-2 1996, and AS2012–1977, ensuring all plant on site were within allowable sound powers. A full range of results for the period can be found in Appendix A.

The measurements were taken under regular operating conditions, ensuring a realistic representation of noise emissions during day-to-day project activities. In cases where normal operating conditions were impractical, stationary tests at high idle were used, offering a thorough evaluation of sound power levels.

The monitoring period saw limited changes in construction activities, resulting in a reduction of SPL monitoring. 2.2.6 MITIGATION MEASURE IMPLEMENTATION

AFJV acknowledges the requirement to implement reasonable and feasible corrective actions to mitigate elevated Sound Pressure Levels (SPLs). This proactive approach has been implemented throughout the duration of the project to ensure compliance with NML's and predictions, as well as minimise potential impacts on the surrounding community. During this reporting period, examples of implemented mitigations included:

A. Tower Crane at Sydney Olympic Park

Prior to mobilisation to Sydney Olympic Park, AFJV implemented additional mitigation measures to reduce noise emissions from a tower crane. These measures included:

- Installation of engineered acoustic shielding on the radiator.
- Modification of the muffler system.

Extensive attended noise monitoring trials were conducted in collaboration with the crane provider to ensure that the mitigation measures achieved compliant noise levels.

B. Drop Pipe Activity at NST (Queen Street)

To minimise noise impacts during drop pipe activities at NST, AFJV implemented the following:

- Installation of noise mats on the hoarding along Queen Street.
- Provision of hoses for washing the mixer to avoid using the pump attached to the agitator (Agi).
- Posting of signs in the drop pipe area to remind drivers to discharge at minimal speed.
- Ensuring quality testing was conducted inside the hoarding area and not on the street prior to coming into site.

These measures were followed by a series of noise monitoring sessions to confirm that compliant noise levels were achieved.

By implementing these mitigation measures and conducting regular noise monitoring, AFJV ensured all works operated in compliance with the conditions of approval, effectively completing the monitoring period with no noise or vibrations related NCR's.

2.2.7 TRAFFIC NOISE REVIEW

No traffic noise reviews were conducted during this reporting period. The process was concluded in Bi-Annual Report 4 and will not be reported in any future reports.

2.3 NOISE AND VIBRATION COMPLAINTS

There were several complaints received from the community regarding noise at each site. Complaints were addressed by the AFJV community team and preventive actions were taken. Reasonable and feasible mitigation measures were provided to minimise the impacts on the affected community members. A number of mitigation strategies were recommended by the environmental team were implemented and facilitated in consultation with the community team.

Examples of mitigation measures associated complaints:

- A noise complaint was received on 26 July 2024, from a resident adjacent to the Five Dock station box. The complaint pertained to noise generated by the hydra wash during daytime hours on weekdays. In response, AFJV investigated and found that the hydra wash was in operation for a short time as part of dust mitigation during spoilt load out. The hydra wash vehicle ceased operation shortly thereafter, and the community team contacted the stakeholder to inform them that the hydra wash vehicle is used as part of dust mitigation when necessary to control dust.
- A noise complaint was received on 20 November 2024, from a resident adjacent to the North Strathfield station box. The complaint pertained to concrete testing not being conducted behind the hoarding. AFJV investigated and found that the concrete testing was indeed done behind the hoarding, but the Ute belonging to the tester was parked outside the hoarding. AFJV instructed the tester to park his vehicle inside the designated parking area for the North Strathfield site. A toolbox was conducted with the driver and gate operator to explain the noise impact on receivers caused by vehicles parked outside the hoarding. Moreover, AFJV installed noise mats on the hoarding along Queen St to reduce the noise level impact of drop pipe activity on receivers living on Queen St. This was followed by a series of noise monitoring to ensure the noise level of the activity is NML-compliant including joint monitoring with the AA and ER.

2.4 CONCLUSION

Attended and unattended monitoring has occurred throughout the reporting period at each CTP site. Monitoring was completed for various purposes including DNVIS compliance, sound power level checks, verification of out of hours work impacts, and NML compliance monitoring.

Majority of observations obtained in the reporting period identified auditory contributors that were not related to AFJV construction activities. Although some elevated levels were observed, reasonable and feasible mitigation measures were implemented.

Elevated events observed during vibration monitoring at the Sydney Olympic Park and Five Dock sites were not related to AFJV works. These spikes were attributed to AFJV swapping vibration monitor batteries and performing maintenance, rather than a result of AFJV vibratory works.

Ground-borne noise and vibration monitoring was conducted along the tunnel/cross passage alignment between Burwood and North Strathfield. The purpose of this monitoring was to ensure compliance with the Noise and Vibration Management Plan and associated documents. During the reporting period, data was systematically recorded and analysed to assess the impact of construction activities on the surrounding environment. The results confirmed that ground-borne noise and vibration levels were in line with or below the modelled predicted values. This demonstrates the effectiveness of the implemented mitigation measures and AFJV's commitment to minimising the impact and proactively communicating with the surrounding affected receivers.

AFJV will continue to implement noise and vibration mitigation strategies where reasonable and feasible.

Where applicable these mitigation measures are included in the relevant DNVIS. AFJV is committed to minimising their impact on surrounding receivers with the implementation of a dedicated noise specialist aimed specifically at identifying and mitigating noise and vibrational impacts. AFJV had an environmental resource allocated for night shift during this reporting period.

3. SURFACE WATER

The purpose of the Surface Water Monitoring Program (SWMP) is to identify the potential impacts of the CTP works on water quality within local receiving waters. The data presented in the B-ACMR was prepared in accordance with Condition C23 of the Project Planning Approval which requires reporting the results of the CTP works to the Planning Secretary, ER and relevant regulatory agencies.

The report is to provide monitoring data and analysis of results as required within the SWMP. This report details the results during the construction phase of the Project. This report compares the ANSECC guideline and baseline water quality against water quality monitoring data undertaken during the reporting period.

3.1 MONITORING SITES

During the reporting period, surface water quality monitoring was undertaken for dry and wet weather conditions in accordance with SWMP monitoring program. Table 3-A Surface water quality monitoring locations provide a summary of the monitoring locations, and the monitoring location map is included in Appendix D.

Surface water quality was measured at eight locations during the reporting period. DC-U/S location has not been monitored in this reporting period due to water levels being too low to sample. Monitoring locations were identified as being representative of the surrounding receiving waters and sufficient to identify potential project impacts should there be any quality exceedances.

Table 3-A SURFACE WATER MONITORING LOCATIONS

Name	Waterway	Nearest Project Site	Location	Distance From Site to Creek
WB-	White Bay	The Bays	-33.866245°S,	Immediately adjacent to the
D/S			151.180450° E	site
DC-	Dobroyd Canal / Iron	Five Dock	-33.873828 ° S,	600m
U/S	Cove Creek		151.128243° E	
DC-	Dobroyd Canal / Iron	Five Dock	-33.870604° S,	600m
D/S	Cove Creek		151.141474° E	
SLP-	St Lukes Park Canal	Burwood North	-33.861571°S ,	230m
D/S			151.113347° E	
PC-	Powells Creek	North Strathfield	-33.862145°S,	350m
U/S			151.086294° E	
PC-	Powells Creek	North Strathfield	-33.852589°S,	350m
D/S			151.082359° E	
SC-	Saleyards Creek	Sydney Olympic Park	-33.852282°S,	1km
D/S			151.081934° E	
HC-	Haslams Creek	Sydney Olympic Park	-33.834564°S,	1km
D/S			151.075772° E	

3.2 SURFACE WATER QUALITY CRITERIA

Chapter 19 (Table 19-6) of the Project EIS identified the following existing water quality conditions relevant to ANSECC indicators in the watercourses near the tunnel alignment and station boxes:

- Haslams Creek: Elevated nutrient concentrations and elevated concentrations of faecal coliforms.
- Saleyards Creek, Powells Creek, St Lukes Park Canal, and Dobroyd Canal/Iron Cove Creek: Low
 dissolved oxygen levels, elevated nutrient concentrations, elevated heavy metal concentrations, and
 high turbidity.
- White Bay: Elevated nutrient concentrations, elevated heavy metal concentrations, and high turbidity.

The surface water monitoring results for this reporting period have been compared to the ANSECC guideline for slightly to moderate disturbed aquatic ecosystems and the pre-existing water quality in Table 3-B. The data provides an indication of general waterway health and is utilised in lieu of baseline surface water monitoring data was collected as part of the EIS.

Table 3-B- PRE-EXISTING WATER QUALITY DATA

Parameter	ANZECC Guideline	Sal1 (U/S)³ – Salesyard creek	Sal2 (D/S) ³ - Salesyard creek	Pow1 (U/S) ³ Powells Creek	Pow2 (D/S) ³ - Powells Creek	SLP2 (D/S) ³ -St Lukes Park Canal	Bar2 (D/S) ³ - Barnwell Park Canal	Dob1 (U/S) ³ - Dobroyd Canal	Dob2 (D/S) ³ - Dobroyd Canal	SW09 Dobroyd Canal ⁴	SW01 Rozelle Bay ⁵
pН	7.0 – 8.5 ²	7.8-9.4	7.5-9.1	7.6-9.5	7.7-9.9	7.8-9.7	7.1-8.2	8.1-9.1	7.0-9.1	7.0 – 8.5	5.6-8.0
Conductivity (uS/cm)	Lowland rivers: 125–2200 µS/cm	126-3744	203-40,823	99-2977	101- 36,323	165-4,535	258- 30,752	230-1718	260- 52,630	42 average	403- 541,180
DO (mg/L)	N/a	8.8-15	5.4-14	6.9-13	6.8-16	8.2-14	4.7-10.8	9.0-13	4.4-15	n/a	-0.16- 558
DO (%sat)	85-110	107-151	67-151	89-130	75-168	96-161	56-110	106-132	58-159	n/a	n/a
Turbidity (ntu)	0.5 – 10 ²	0-138	5-101	4-501	2-444	0-364	6-48	11-549	2.5-187	n/a	0-52
Oil and grease	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Notes: 1 – ANZECC (2000) – slightly to moderately disturbed aquatic ecosystems, 2 – Guideline value for SE Australian estuaries 3 - Appendix R of the M4 East project EIS 4- WestConnex M4-M5 Link Mainline Tunnels Soil and Surface Water Management Sub-Plan 5- WestConnex Rozelle Interchange Project Soil and Surface Water Management Plan

3.3 RAINFALL DATA

During the reporting period 395.2 mm of rainfall was received at Observatory Hill with the highest rainfall received in November 2024 with 100.2 mm and lowest in August 2024 with 45.2 mm as presented in Figure 3-A.

Figure 3-A- Rainfall statistics

3.4 SURFACE WATER QUALITY RESULTS

A review of the water quality data gathered as part of the Project EIS revealed that the watercourses associated

with the CTP Project were in poor condition before project commencement, indicative of a highly urbanised system. Surface water data collected during the monitoring period showed exceedances in Dissolved Oxygen, Electrical Conductivity, Turbidity and pH compared to ANSECC 2000 guidelines for slightly to moderately disturbed aquatic ecosystems. These exceedances were compared with preconstruction values from Table 3-B and the EIS. The comparison found that results were consistent with observations in Chapter 19 of the EIS, particularly section 19.5.2 and Table 19-6, and fell within ranges observed in previous projects. Therefore, it can be concluded that the observed deviations in surface water quality are likely due to pre-existing conditions in the densely populated urban setting, rather than direct impacts from project activities.

Additionally, a comparison of surface water monitoring results (Appendix C) with discharge data from the Water Treatment Plants showed no correlation in the fluctuations of watercourse characteristics. Moreover, during this monitoring period, both the Five Dock and Burwood Water Treatment Plants were not operational, further supporting the conclusion that the recorded exceedances are not linked to AFJV's construction activities.

3.5 FIELD OBSERVATIONS

No abnormal odours, visible turbidity/contamination attributable to AFJV works were identified throughout the reporting period. Appendix C provides a detailed summary of pH, EC (Electrical Conductivity), dissolved oxygen, and turbidity results collected from each water quality sampling location.

Throughout the monitoring events no significant variance in water quality or obvious sediment plumes were observed during sampling.

3.6 CONCLUSION

As outlined in section 3.3, a review of the pre-existing surface water quality data collected from Sydney Metro, Local Councils, University of Western Sydney, and WestConnex M4 East project undertaken as part of the EIS revealed that some of the background levels exceeded the ANSECC (2000) water quality trigger values for slightly to moderately disturbed aquatic ecosystems. When compared with pre-existing data, elevated water quality results obtained by AFJV across the monitoring period fall within expected ranges, with no identifiable analyte trends observed throughout the periods data (see appendix C). Given the significant sprawl of urban development and substantial distance between the project boundary and the surface monitoring points it can be concluded that elevated water quality analyte levels observed across the surface water monitoring data for the period cannot be attributable to the CTP project.

4. GROUNDWATER

The purpose of the Groundwater Monitoring Program (GWMP) is to identify the potential impacts of the CTP works on the groundwater quality of the local environments. The data presented in the B-ACMR is prepared in accordance with condition C17 and C23 of the Project Planning Approval, which requires reporting the results of the CTP works to the Planning Secretary, ER and other relevant regulatory agencies.

This report details the results during the construction phase of the GWMP for The Bays, Five Dock, Burwood North, North Strathfield and Sydney Olympic Park. All locations are currently being monitored on a quarterly basis as per the Groundwater Monitoring Program.

Groundwater encountered in excavations for the Project has been treated by water treatment plants (WTP) at The Bays site during this monitoring period. Since the surface water and ground water is treated through a single water treatment plant, the numerous variables, including sprinkler systems utilised for dust suppression, wash down equipment and cleaning in the tunnel, makes calculating the specific amount of groundwater ingress for each site an estimation.

4.1 GROUNDWATER MONITORING LOCATIONS

In accordance with the GWMP, there are 33 boreholes identified throughout the project to monitor and sample. Section 7.1 of the CEMP specifies monitoring monthly for the first three months of construction and quarterly thereafter. Borehole locations utilised during the reporting period are summarised in Appendix D.

Refer to Table 4-A for a summary of monitoring completed within the reporting period.

Table 4-A- GROUNDWATER MONITORING PERIOD

Site	Ground Disturbance Trigger Date	Construction Monitoring (first 3 months of construction)	Quarterly Monitoring
The Bays	05/04/2022	Round 1: 05/05/2022 Round 2: 25/5/2022	Round 1: 19/09/2022 Round 2: 12/12/2022
		Round 3: 21/06/2022	Round 2: 12/12/2022 Round 3: 21/03/2023
		Nourid 3. 21/00/2022	Round 4: 26/06/2023
			Round 5: 20/09/2023
			Round 6: 11/12/2023
			Round 7: 19/03/2024
			Round 8: 11/06/2024
			Round 9: 10/09/2024
			Round 10: 12/11/2024
Five Dock	23/05/2022	Round 1:21/06/2022	Round 1: 21/11/2022
		Round 2:18/07/2022	Round 2: 21/02/2023
		Round 3: 29/08/2022	Round 3: 27/06/2023
			Round 4: 23/08/2023 Round 5: 21/11/2023
			Round 6: 21/02/2024
			Round 7: 13/05/2024
			Round 8: 12/08/2024
			Round 9: 12/11/2024
Burwood North	1/06/2022	Round 1: 21/06/2022	Round 1: 21/11/2022
		Round 2: 18/07/2022	Round 2: 20/03/2023
		Round 3: 29/08/2022	Round 3: 19/06/2023
			Round 4: 23/08/2023
			Round 5: 21/11/2023

			Round 6: 21/02/2024
			Round 7: 13/05/2024
			Round 8: 12/08/2024
			Round 9: 12/11/2024
North Strathfield	09/11/2022	Round 1: 21/03/2023	Round 1- 28/08/2023
		Round 2: 27/04/2023	Round 2: 22/11/2023
		Round 3: 30/05/2023	Round 3: 21/02/2024
			Round 4: 13/05/2024
		Refer to section 4.2.3	Round 5: 12/08/2024
			Round 6: 12/11/2024
Sydney Olympic	21/06/2022	Round 1: 18/07/2022	Round 1: 12/12/2022
Park		Round 2: 29/08/2022	Round 2: 21/03/2023
		Round 3: 19/09/2022	Round 3: 27/06/2023
			Round 4: 20/09/2023
			Round 5: 12/12/2023
			Round 6: 19/03/2024
			Round 7: 11/06/2024
			Round 8: 10/09/2024
			Round 9: 12/11/2024

4.2 FIELD INVESTIGATION

4.2.1 GROUNDWATER MONITORING METHODOLOGY

To ensure accurate results, the methodology outlined in the Groundwater Monitoring Program for gauging and collecting samples during the monitoring rounds was followed. In cases where it was not possible to pump water from the boreholes due to lack of water or space restrictions on site (for example, physically unable to place equipment), a bailer was used to collect samples. Detailed monitoring methodology is available in Appendix D.

4.2.2 GROUNDWATER SAMPLING AND GAUGING

Groundwater sampling and gauging was conducted at accessible groundwater monitoring wells. Table 4-B outlines the boreholes where sampling attempts were made during the monitoring period. Further explanation on why some boreholes were not sampled is included in table 4-C.

Table 4-B Groundwater Wells Monitored

Site	Borehole number	Quarterly Monitoring 9	Quarterly Monitoring 10
	S02d	Sampled	Sampled
	S02s	Not monitored (Refer to table 4-C)	Sampled
	S06	Sampled	Sampled
The Bays	AF_CGW1	Not monitored (Refer to table 4-C)	Not monitored (Refer to table 4-C)
	S54	Not Monitored (Refer to table 4-C)	Not Monitored (Refer to table 4-C)

Site	Borehole number	Quarterly Monitoring 8	Quarterly Monitoring 9
	SMW_BH019	Sampled	Sampled
	SMW_BH120	Sampled	Sampled
Sydney Olympic Park	SMW_BH126	Sampled	Sampled
	BH715B	Sampled	Sampled
	AF_BH36	Sampled	Sampled
Site	Borehole number	Quarterly Monitoring 8	Quarterly Monitoring 9
Burwood	BH046R	Sampled	Sampled
24,11004	BH044	Sampled	Sampled
Site	Borehole number	Quarterly Monitoring 8	Quarterly Monitoring 9
	BH051	Sampled	Sampled
5° . D. I	BH051s	Not monitored (Refer to table 4-C)	table 4-C)
Five Dock	BH050s	Not monitored (Refer to table 4-C)	Sampled
	BH050	Not monitored (Refer to table 4-C)	 Not monitored (Refer to table 4-C)
Site	Borehole number	Quarterly Monitoring 5	Quarterly Monitoring 6
	SMW-BH035s	Sampled	Sampled
	SMW_BH009	Not monitored (Refer to table 4-C)	Not monitored (Refer to table 4-C)
North Strathfield	SMW_BH009s	Sampled	Sampled
	SMW_BH035	Sampled ¹	Not monitored (Refer to table 4-C)
	SMW_BH038	Sampled	Sampled

Refer to Appendix D for detailed description of the monitoring conducted. Sampling dates are specified in table 4-A. Due to the staging of stations boxes and therefore disturbance of ground, the "reporting quarter" for each site will vary from site to site based on staging of works.

4.2.3 GROUNDWATER MONITORING WELL STATUS

As detailed in Table 4-B, there were several groundwater monitoring wells that could not be accessed,

replaced, or sampled during this monitoring period. The explanation of why these wells were not monitored is listed in Table 4-C below.

Table 4-C Explanation of groundwater wells not monitored

Month (2024)	Site	Borehole number	Comments
Round 8: 12/08/2024 Round 9: 12/11/2024	Five Dock	SMW_BH051s	The monitoring well had no water to sample.
Round 8: 12/08/2024	Five Dock	SMW_BH050s	The monitoring well had no water to sample.
Round 8: 12/08/2024 Round 9: 12/11/2024	Five Dock	SMW_BH050	The monitoring well had no water to sample.
Round 5: 12/08/2024 Round 6: 12/11/2024	North Strathfield	SMW_BH009	During the sampling operation conducted in the month of August 2023, an incident occurred wherein the bailer became lodged within the well, which possesses a depth of approximately 40m. Despite efforts, the bailer proved unretrievable, leading to the decision to sever the rope from the surface. As a consequence of this unforeseen circumstance, the monitoring well remains inaccessible for sampling.
Round 6: 12/11/2024	North Strathfield	SMW_BH035	The monitoring well had no water to sample.
Round 9: 10/09/2024 Round 10: 12/11/2024	The Bays	S54	The borehole couldn't be monitored as the casing is bent making it impossible to feed the pump/bailer through the casing.
Round 9: 10/09/2024	The Bays	S02_s	The monitoring well had no water to sample.
Round 9: 10/09/2024 Round 10: 12/11/2024	The Bays	AF_CGW1	The monitoring well had no water to sample.

4.2.4 FIELD OBSERVATIONS

During sampling and gauging, no odours were noted. Additionally, no visual sign of contamination (such as a sheen) was observed during sampling. Refer to Appendix D for a detailed summary of pH and EC (Electrical Conductivity), DO (dissolved oxygen), redox, turbidity, each borehole sampled during the monitoring period.

4.3 GROUNDWATER WATER QUAILITY

In accordance with the GWMP and GWMoP, an analysis of groundwater quality monitoring results has been undertaken for the reporting period, this section will a focus on assessing fluctuations in water chemistry against the established trigger values outlined in the Groundwater Monitoring Plan.

The investigation evaluates localised water quality trends in boreholes across the project footprint, assessing the influence of CTP construction works on the surrounding Groundwater environment as anticipated by the project EIS. The findings are contextualised with historical data to assess mid to long-term trends and to ensure effective management of water quality impacts.

4.3.1 TRIGGER VALUES

A set of trigger values was developed on a site-by-site basis following the below steps:

- If result below LOR (Limit of reporting), the trigger value is set at:
 - LOR x 10 (if LOR is more than 10x > screening levels);
 - LOR (if LOR is less than 10x screening levels)
- For result with detects:
 - If data does not support statistics applied maximum plus 20%, also note where the maximum already exceeds screening levels (The 20% represents the standard field/lab error we apply in normal QA/QC (Quality Assurance/Quality Control)).

If there is an exceedance of a Trigger Value, the following next steps may be considered:

- Review Site data for the well with the exceedance.
- Data for that well should be tracked for long-term trends after the next sampling period;
- If the next sampling round also exceeds, increased frequency of sampling is warranted to evaluate the longer-term trend; and
- If increasing trends are identified, further site-specific assessment should be conducted that can
 include review of hydrogeologic information, trends and as well as assessment of risks to quality of
 water.

4.3.2 LABORATORY RESULTS ANALYSIS

Throughout this monitoring period all groundwater laboratory results were assessed against the determined trigger values, which can be found in appendix D. A summary of exceedances identified across CTP are outlined in table 4-D.

Table 4-D Identified exceedances of Groundwater trigger values in this reporting period.

Site	Borehole	Month	Analyte
		September	Chloroform, TRH C10 - C1-, TRH C15 - C28, Total +ve TRH (C10-C36), TRH >C16 - C34. Total +ve TRH (>C10-C40)
	S_02d		
The Bays		November	Ammonia (as N in water), Total Nitrogen in water, TRH C10 - C1-,
			TRH C15 - C28, TRH C29-C36, Total +ve TRH (C10-C36), TRH >C16 - C34. TRH >C34-C40
	S06	September and November	No exceedances
	S_02s	November	No exceedances
		August	Nitrate as N in wáter, Total Nitrogen in water, Copper-Dissolved
Five Dock	SMW_BH051	November	TRH C15 - C28, Total +ve TRH (C10-C36), TRH >C16 - C34, Total +ve TRH (>C10-C40)
FIVE DOCK	SMW_BH050s	November	TRH C15 - C28, Total +ve TRH (C10-C36), TRH >C16 - C34, Total +ve TRH (>C10-C40), Boron-Dissolved, Barium-Dissolved, Boron-Total, Barium-Total
	SMW_BH046R	August	Bicarbonate Alkalinity as CaCO3, Nitrate as N in water, Copper- Dissolved, Cobalt-Dissolved, Molybdenum-Dissolved, Nickel- Dissolved, Copper-Total, Cobalt-Total, Molybdenum-Total, Nickel- Total, Lead-Total, Sinc-Total, Iron-Total
Burwood		November	Bicarbonate Alkalinity as CaCO3, Nitrate as N in water, Copper- Dissolved, Cobalt-Dissolved, Nickel-Dissolved, Arsenic-Total, Beryllium-Total, Cadmium-Total, Cobalt-Total, Nickel-Total
		August	TRH >C16 - C34, Total +ve PAH's,
	C. 414 D.1044	November	TRH C15 - C28, TRH C29 - C36, Total +ve TRH (C10-C36), TRH >C16
	SMW_BH044		- C34, Total +ve TRH (>C10-C40), Pyrene, Chrysene,
			Benso(b,j+k)fluoranthene, Indeno(1,2,3-c,d)pyrene, Benso(g,h,i)perylene, Total +ve PAH's,
North Strathfield	SMW_BH035s	August	Perfluorohexanesulfonic acid – PFHxS

		November	Manganese-Dissolved
	SMW_BH009S	August	Perfluorooctanoic acid PFOA,
		November	Perfluorooctanoic acid PFOA
	SMW_BH035	August	Hardness, Nitrate as N in water, Total Nitrogen in water
	SMW_B H038	August and November	No Exceedance
		September	Cobalt-Dissolved, Manganese-Dissolved
	SMW_BH120	November	Cobalt-Dissolved
	SMW_BH126	September	Bensene, TRH C29 - C36, Phenanthrene, Perfluorobutanesulfonic acid,
		November	No exceedance
Olympic Park		September	Cobalt-Dissolved, Manganese-Dissolved, Beryllium-Total, Copper- Total, Manganese-Total
	AF_BH36	November	Cadmium-Dissolved, Copper-Dissolved, Cobalt-Dissolved, Manganese-Dissolved, Beryllium-Total, Copper-Total, Cobalt-Total, Manganese-Total
	C. 41.4 D.1040	September	No Exceedance
	SMW_BH019	November	No Exceedance
Tunnel Alignment		September	Calcium – Dissolved, Perfluorohexanoic acid
	BH_715B	November	Magnesium – Dissolved, Hardness, Sulphate, SO4, Chloride, Cl, Cadmium-Dissolved, Copper-Dissolved, Cobalt-Dissolved, Sinc- Dissolved, Cadmium-Total, Cobalt-Total, Tin-Total, Sinc-Total

Fluctuations in water chemistry were observed throughout this reporting period but after a thorough analysis, no meaningful trends in analyte concentrations were observed. Analysis included dissolved sodium and chloride which is used as an indicator of saltwater ingress due to groundwater.

The groundwater monitoring program specifies that a management response will be initiated under the following conditions:

- The EC or water quality data continuously exceeds the trigger value over three consecutive monitoring periods, showing a rising trend.
- The EC or water quality data exceeds the trigger value by more than 100% at any time.

Below is the analysis of each case that triggered the management response detailed above (This includes results of this reporting period and previous ones to evaluate the mid-term trends). Refer to Appendix D for trend graphs. Note that the reference to "D" and "S" indicate deep and shallow boreholes respectively.

BH120 and BH126:

Located adjacent to SOP's station box, BH120 and BH126 returned analyte levels of dissolved cobalt and perfluorobutanesulfonic acid (PFAS), respectively, between July and December 2024. BH120 exhibited dissolved cobalt concentrations above the trigger value of 13.2 μ g/L during this period, with levels increased slightly from 14 μ g/L in July to 19 μ g/L in both September and November 2024. In BH126, PFAS concentrations exceeded the trigger value of 0.264 μ g/L in September 2024, reaching 0.59 μ g/L, before dropping below the trigger value in November 2024.

As mentioned in previous reports, Technical Papers 7 and 8 of the Project's EIS indicate that groundwater in this area may be contaminated with nutrients, metals, hydrocarbons, volatile organic compounds, perfluorooctanesulfonic acid, asbestos, and landfill gas. The EIS also highlights that excavation activities act as a groundwater sink, drawing in groundwater and potentially mobilising contaminants. The analyte concentrations observed during this monitoring period align with the EIS findings, suggesting localised contamination and variability due to patches of impacted groundwater, drawn in by the passing of the TBM's, and stabilising upon tunnelling completion in early October 2024.

AFBH36:

AFBH36 is located further away from SOP's station box and along the tunnel alignment. According to Technical Papers 7 and 8 of the EIS, the contaminants of concern in this area include PFAS, nutrients, heavy metals, hydrocarbons, and volatile organic compounds (VOCs).

During the monitoring period, AFBH36 observed exceedances in dissolved manganese, dissolved cobalt, total beryllium, total copper, and total manganese across three consecutive monitoring rounds. In most cases, analytes observed a single minor exceedance of the trigger value, however, in the case of Manganese and Cobalt an increasing tread was observed throughout the monitoring period. As per the performance criteria exceeded trigger value recommendations specified in section 4.3, the long-term water quality trends of AFBH36 were reviewed alongside a comprehensive assessment of the areas chemical hydrology as outlined in the EIS.

The review of historical data identified a notable outlining peak in contaminant concentrations across all analytes was observed in December 2023. Since this peak, contamination levels have generally decreased in subsequent monitoring rounds leading up to and following the completion of excavation in October 2024, which is consistent with localised variations in groundwater quality described in the EIS.

A review of the project literature found that analyte concentrations observed in borehole AFBH36's align with the EIS findings, which anticipated a large degree of volatility, characteristic of heterogeneous contamination within the groundwater system, mobilised by temporary excavation-induced drawdown can mobilise contaminants in localised areas.

These findings were cross analysed with available datalogger information in an attempt to assess whether a correlation could be identified. Some drawdown of approximately four meters was observed as the TBM passed in October 2024, however no further variation could be identified, nor could any correlation with the water quality variations be drawn.

BH035 and BH035S:

BH035 and BH035S are shallow boreholes situated near the North Strathfield station box. Monitoring at these locations identified exceedances in dissolved manganese, nitrate, and nitrogen levels. Once again, in accordance with the exceeded trigger value recommendations, a review of the water quality data collected since the project's inception was undertaken. The analysis revealed that, with the exception of dissolved manganese, the concentrations of identified analytes exhibited a stabilising trend. No variations were detected in the datalogger readings from this borehole.

S02 d:

Located at adjacent to White Bay Power Station, S02_d exhibited exceedances in Total Recoverable Hydrocarbons (TRH) (C10-C36, C15-C28, >C16-C34, and >C10-C40) throughout this monitoring period. In all cases, TRH levels were observed to fall below the trigger value in the June 2024 monitoring rounds. However, exceedances were detected again in September and November 2024 for TRH C10-C36, C15-C28 and >C16-C34 classification, but not in >C10-C40. In all cases concentrations were observed to fall in the November 2024 sampling round.

A review of the historical water quality data collected at borehole S02_D identified significant volatility in TRH concentrations with no clear trend or correlation with AFJV excavation, tunnelling or surface works program, suggesting that the exceedances were pre-existing and not caused by AFJV activities. Technical Paper 8 confirmed this position, identifying the potential for groundwater within, and around the construction footprint to be contaminated with an array of contaminants including hydrocarbons.

4.4 GROUNDWATER LEVELS

Apart from the data gathered during the field investigations, live dataloggers are installed in boreholes across the CTP station boxes and tunnel alignment. This data was monitored by engineers and survey teams to monitor observable drawdowns to ensure these are within the expected levels. This report was collated in consultation with respective engineering teams who provided input into the conclusions drawn from groundwater levels data.

During the reporting period, groundwater levels in the boreholes located along the project station boxes exhibited minimal variance. Data retrieved from water well loggers located along the tunnel alignment historically observed fluctuations during the immediate passing of TBMs or minimal changes from cross passage excavation. In the previous reporting period, considerable fluctuation in groundwater levels were observed in the boreholes immediately adjacent to XP34 (BH 26.15, Bh26.30 and BH26.42). These boreholes have since stabilised and have remained consistent for a six-month period. All other water wells have displayed either a stable trend or have recharged to pre-construction levels.

Refer to Appendix D for a summary of all groundwater level data compiled during the reporting period.

Table 4-E shows the boreholes that utilised dataloggers over the reporting period. Note that a majority of the 6 and 12 month post excavation monitoring requirements for the dataloggers concluded in December 2024.

Table 4-E Live datalogger boreholes

	LIVE DATALOGGER BOREHOLES													
TBM Alignment Water Levels	THE BAYS	FIVE DOCK	BURWOOD	NORTH STRATHFIELD	SYDNEY OLYMPIC PARK									
AF_BH26.15 AF_BH26.30 AF_BH26.42 AF_BH30.15 AF_BH30.30 AF_BH36 AF_BH36 AF_BH36 AF_BH37 AF_BH37 AF_BH37s SMW_BH710_v SMW_ENV715B_W	No live dataloggers from July 2024 onwards.	SMW_BH050_s SMW_BH050_w SMW_BH051_s SMW_BH051_w R248_3103_BH141 R248_3103_BH141A	BH1326 SMW_BH044w SMW_BH046s BH1333 BH1336 BH714_s BH714_w SMW_BHCINT01 SMW_BHCINT03	SMW_BH009_s SMW_BH009_w SMW_BH035_s SMW_BH035_w SMW_BH038_w	SMW_BH019_w SMW_BH120_W SMW_ENV714_W									

Technical paper 7 of the Project EIS identified that the tunnel alignment passes within 500 metres of groundwater-dependent ecosystems (terrestrial vegetation) in the suburbs of Westmead, Parramatta, Clyde, Silverwater, and Sydney Olympic Park. However, the temporary drawdown detected near Cross Passage 34, located between Burwood North and Five Dock Station Boxes, does not have a groundwater-dependent ecosystem in its vicinity so no impact is expected to GDEs due to tunnel excavation.

4.5 WATER TREATMENT PLANTS

Prior to 5 December 2024, CTP Water Treatment Plant (WTP) monitoring has been undertaken in the form of Proof of performance (PoP) sampling as per condition E2.1 and condition M2.2 of the project's EPL (Notice number 1637016) which required a performance report to be submitted to the EPA within 10 business days of each sample being taken in accordance with the following schedule:

- i) Daily on the first 3 days of discharges,
- ii) Weekly for the first month of discharges,
- iii) Fortnightly for the first 3 months,
- iv) Monthly for the rest of the WTPs operation. (Condition M2.2 of the EPL)

An EPL variation (1643447) was issued on 5 December 2024 revising the projects water discharge criteria limits at both The Bays WTP and Burwood North WTP and removing the clause requiring PoP reporting. Monthly monitoring continues for compliance review and as required by the EPL and will be submitted as part of the final B-ACMR.

During the July to December 2024 reporting period, three Water Treatment Plants were in operation, one at The Bays, one at Burwood North, and one at Sydney Olympic Park. Sydney Olympic Park's water treatment plant was decommissioned on 12 July 2024. Offsite discharge from the Burwood North water treatment plant did not occur during the reporting period. This was due to an incident that involved discharges off site that were outside the pH criteria in April 2024. The incident was reported to the EPA, Sydney Metro and DPHI. The EPA concluded their investigation on 17 December 2024 issuing one penalty notice, one formal warning and two caution notices. AFJV now considers this matter is closed.

Additional sampling has occurred at the Burwood North WTP following filter media replacement in November 2024.

Any exceedances of EPL criteria identified sampling in accordance with the EPL has been supplied to the EPA and depicted in Table 4-F along with corrective actions taken to improve water quality. Refer to Appendix E for water quality sampling results.

Table 4-F corrective actions for WTP elevated concentrations

Site	Analyte	Corrective action for elevated concentration								
The	Nitrogen total	Ongoing maintenance includes backwashing the IEP65 filters every 2-3 days, weekly								
Bays	Phosphorus total	backwashing of the GAC filters, and fortnightly backwashing of the IX filters. Regular jar testing is conducted to adjust coagulant dosing, and weekly cleaning and calibration of probes is performed on the WTP. Following the EPL Variation, sample results received show full compliance with the new EPL discharge criteria.								
Burwood	Aluminium	No offsite discharge from the Burwood North WTP occurred during the reporting period.								
North	Manganese	EP65, GAC, IX Resin filter medias were replaced in November 2024. Following the replacement of the above filter media, additional water samples were collected								
	Zinc	from the water treatment plant. Lab results showed exceedance in total Phosphorus only.								
	Nitrogen total	Backwashing and water treatment is ongoing to get the water treatment plant compliant.								
	Phosphorus total									
	Ammonia									
	Nitrate+Nitrite									
Sydney	Nitrogen total	Sydney Olympic Plant Water treatment plant was decommissioned in July 2024.								
Olympic Park	Phosphorus total									

The performance of the WTP's is continually monitored and maintenance conducted to ensure the discharge concentrations are within the established limits in the EPL Condition L2.

Average daily discharge totals vary depending on production and groundwater ingress in the station boxes. The cumulative discharge from The Bays and Sydney Olympic Park plants is depicted below in Figures 4-A and 4-B. There was no discharge at Burwood North WTP during the reporting period. The cumulative discharge is only representative for the 6 month reporting period and is not representative of discharge prior to July 2024.

Figure 4-A - Six-month cumulative discharge for The Bays' WTP

Figure 4-B - Six-month cumulative discharge Sydney Olympic Park's WTP

4.6 CONCLUSION

As discussed in section 4.3 of this report, analysis of water quality across multiple boreholes during the reporting period identified significant fluctuations and volatility in analyte concentrations. Although no meaningful overarching trends were observed, the variation of analyte levels coincided with the heterogeneous contamination patterns anticipated by the EIS.

Localised contamination was evident in several boreholes, with exceedances of trigger values detected. In BH120 and BH126, dissolved cobalt and PFAS levels exceeded trigger values, reflecting the temporary, non -

sustained influence of excavation-induced groundwater drawdown, which stabilised following the completion of tunnelling in late October to early September 2024. Similarly, AFBH36 recorded several contaminant exceedances, with manganese and cobalt during the reporting period. These findings corroborate the EIS prediction that excavation-induced drawdown can mobilise contaminants, with concentrations stabilising after tunnelling activities concluded. In BH035 and BH035S, exceedances of dissolved manganese, nitrate, and nitrogen were identified, though analyte levels, except for manganese, exhibited stabilising trends, indicating limited and temporary impacts from construction activities. For borehole S02_D, exceedances in Total Recoverable Hydrocarbons (TRH) were intermittently observed; however, historical data and the absence of a correlation with excavation or surface works suggest these exceedances were pre-existing.

Overall, the observed water quality impacts align with the EIS predictions and were primarily localised and temporary, driven by excavation and tunnelling activities. The project's primary mitigation, the Water Treatment Plant, effectively managed potentially contaminated water ingress, ensuring any elevation in analyte levels observed over the reporting period was mitigating from mobilising into the broader environment.

Special attention was given to analytes like sodium and chloride, which were identified to indicative of saltwater intrusion, a key indicator of significant and continued project-related drawdown. No identifiable trend was observed in the results or field observations collected by AFJV. Consequently, based on AFJV's extensive groundwater monitoring, it can be concluded that exceedances identified during the period reflect pre-existing conditions rather than sustained groundwater drawdown or other construction related impacts.

Data loggers analysed across the CTP station boxes and tunnel alignment confirmed that the groundwater levels remained consistent with estimated drawdown outlined in technical paper 7 – Hydrology. Throughout the reporting period, the groundwater levels in the boreholes situated along the project alignment and station boxes displayed minimal variance. An examination of data retrieved from water well loggers indicated no significant fluctuations in groundwater levels compared to pre-existing estimates and recharge occurring within the expected timeframe. Data logger values observed in Appendix D confirm all water wells have stabilised or recharged to pre-existing levels. Specific note was made of BH26.15, BH26.30 and BH26.45 which had seen significant fluctuations in the previous reporting period. Data collected from the current period identify these boreholes have now stabilised for a period of five months.

Monitoring of water treatment plants detected minor exceedances of organic compounds, nutrients, and metals. Exceedances were minor and unlikely to cause a measurable impact to the receiving environment and waterways. Corrective actions such as exchanging and renewing filter media and increasing backwashing frequency were implemented in response to the observed exceedances. All water treatment monitoring results were collated and submitted to the EPA in proof of performance reports in accordance with the EPL up until the variation on 5 December 2024.

APPENDIX A - NOISE MONITORING

APPENDIX A (i) – ATTENDED NOISE MONITORING REGISTER & FIELD SHEET EXAMPLES

Date	Time	Attended/Unatte	e Site	Purpose	OOHW#	Source location	Monitoring location	Works	NCA	Period	NML Level	Model Prediction (LAeq) dB	1 LAeq dB	LA90 dB LA	nax dB	NML exceeded?	Exceed model prediction?	Compliant with ICNG	Mitigation measures implemented?	LAeq After MM implementation	Prediction Exceedance AFJV related?	Works Compliant?	Notes
9/07/2024	09:00pm-09:14pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	125 Queen St, NST	TBM Traverse	NCA11	- 0	48	40	67		90.3	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
9/07/2024 9/07/2024	09:16pm-09:30pm 09:33pm-09:47pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 83 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Evening	48 48	45 40	64.9 57.5		86.1 77.1	Yes Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
9/07/2024	11:00pm-11:14pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	125 Queen St, NST	TBM Traverse	NCA11	Night	44	40	58.8	46.9	78	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
9/07/2024 9/07/2024	11:18pm-11:32pm 11:37pm-11:51pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 83 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Night	44	45 40	61.6 54	48.7 56.5	74.7	Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
9/07/2024	12:00am-12:14am	Attended	Burwood	OOHW Verification	308	Parramatta Rd, BWD	8 Burwood Rd, BWD	6T Excavator, Wacker Backer, Hand Tools, Concrete Saw	NCA12	Night	47	71	69.3	65.4	83.9	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were the primary sources of noise. As expected, the noise level exceeded the NML during the monitoring period. Surprisingly, the predicted level was also surpassed due to AFIV works. However, AFIV has provided alternative accommodation for the receivers and implemented additional intigation measure, as mentioned above.
10/07/2024	09:00pm-09:14pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	125 Queen St, NST	TBM Traverse	NCA11	Evening	48	40	60.7		72.3	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
10/07/2024	09:18pm-09:32pm 09:33pm-09:47pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 81 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Evening	48 48	45	63.2 59.1	51.2 51.2	76.8 77	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
10/07/2024	11:33pm-11:47pm 11:00pm-11:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	125 Queen St, NST 93 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Night	44	40	55.3 60.4	53.3 49	76 83.4	Yes	No No	Yes	Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
10/07/2024	11:15pm-11:29pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	83 Queen St, NST	TBM Traverse	NCA11	Night	44	40	57.5	47.7	75.2	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
11/07/2024 11/07/2024	09:00pm-09:14pm 09:23pm-09:37pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	125 Queen St, NST 93 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Evening	48 48	40 45	64.5 65.4	46.5 48.7	78.9 85.2	Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
11/07/2024 11/07/2024	09:40pm-09:54pm 11:00pm-11:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	81 Queen St, NST 125 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Night	48	40	59.5 58.7	47 44.8	76.2 75.2	Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
11/07/2024	11:18pm-11:32pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	93 Queen St, NST	TBM Traverse	NCA11	Night	44	45	61.8	45.8	62.9	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
11/07/2024 12/07/2024	11:33pm-11:47pm 09:00pm-09:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	83 Queen St, NST 125 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Evening	44 48	40 40	53.5 61.7	43.5 50.1	74.3 78.5	Yes Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
12/07/2024 12/07/2024	09:16pm-09:30pm 09:33pm-09:47pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 81 Queen St. NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Evening	48 48	45 40	63.5 59.1	50.7 49.6	80.3	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
12/07/2024	11:00pm-11:14pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	125 Queen St, NST	TBM Traverse	NCA11	Night	44	40	61.6	50.9	77.6	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
12/07/2024 12/07/2024	11:15pm-11:29pm 11:31pm-11:45pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 83 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Night	44 44	45 40	59 56.1	50.8 50.1	79.4 71.9	Yes Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
12/07/2024 18/07/2024	10:00pm-10:14pm 11:00pm-11:14pm	Attended Attended	Five Dock North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box	9 East St, FDK 125 Queen St, NST	Booster, Conveyor Belt	NCA14 NCA11	Night Night	38	38	53.9 56.5	51.8 46.5	68.2 77.5	Yes Yes	Yes	Yes Yes	Yes Yes	N/A N/A	No No	Yes	The construction activities were audible, and the noise level of the construction works (Hum) was 47 dBA.
18/07/2024	11:16pm-11:30pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box Station box	93 Queen St, NST	TBM Traverse TBM Traverse	NCA11	Night	44	45	58.6	48.4	77.4	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
18/07/2024 22/07/2024	11:32pm-11:46pm 09:00pm-09:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	83 Queen St, NST 125 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Evening	44 48	40 40	58.6 64.2		77.4 86.3	Yes Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
22/07/2024 22/07/2024	09:17pm-09:31pm 09:34pm-09:48pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 81 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Evening	48	45 40	64.8 60.5	52.8 51	82.3 82.8	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
23/07/2024	09:00pm-09:14pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box Station box	125 Queen St, NST	TBM Traverse	NCA11	Evening	48	40	62.3	48	80.9	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
23/07/2024 23/07/2024	09:18pm-09:32pm 09:33pm-09:47pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 81 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Evening	48 48	45 40	66.9 58.4	51.8 49	95.7 76.9	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
23/07/2024	11:00pm-11:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification	N/A	Station box	125 Queen St, NST 93 Queen St, NST	TBM Traverse	NCA11	Night	44	40	57.7 64.3	48.8	75.7	Yes	No No	Yes	Yes	N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
23/07/2024 23/07/2024	11:17pm-11:31pm 11:33pm-11:47pm	Attended	North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	83 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Night	44	45	53.7		92.6 72.7	Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
24/07/2024 24/07/2024	09:27pm-09:41pm 10:00pm-10:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	125 Queen St, NST 125 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Night	48 44	40 40	63.2 60.8	51.8 50.7	77.2 75.3	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
24/07/2024	10:19pm-10:33pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	93 Queen St, NST	TBM Traverse	NCA11	Evening	48	45	64.1	50.8	81.3	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
24/07/2024 24/07/2024	10:35pm-10:49pm 08:41am-08:55am	Attended Attended	North Strathfield Burwood	DNVIS Verification OOHW Verification	N/A 421	Station box Station box	83 Queen St, NST 16 Burton St, Concord	TBM Traverse one Agi in operation, three agis idle	NCA11 NCA12	Night Evening	44	40	56.8 58.9		71.9 79.4	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were the primary sources of noise. As expected, the noise level exceeded the NML during the
24/07/2024	08:57pm-09:11pm	Attended	Burwood	OOHW Verification	421	Station box	16 Burton St, Concord	one Agi in operation, three agis idle		Evening	47	47	61.7	46.2	79.6	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were the primary sources of noise. As expected, the noise level exceeded the NML during the
25/07/2024 26/07/2024	10:14pm-10:28pm 09:00pm-09:14pm	Attended Attended	North Strathfield North Strathfield	OOHW Verification DNVIS Verification	429 N/A	Station box	25 Beronga St, NST 125 Queen St, NST	60t Crane, Flatbed TBM Traverse	NCA11	Night Evening	44	62 40	59.2 67	48.7	78 88.8	Yes	No No	Yes Yes	Yes	N/A N/A	No No	Yes	Construction activities were audible, but traffic on Queen St and Berongs St was more noticeable. However, AFJV has provided alternative accommodation (AA). The noise level of the construction works was around 54-55 dBA. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
26/07/2024	09:17pm-09:31pm	Attended	North Strathfield	DNVIS Verification	N/A	Station box	93 Queen St, NST 81 Queen St, NST	TBM Traverse	NCA11	Evening	48	45	66.4		88.9	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
26/07/2024	09:33pm-09:47pm 11:00pm-11:14pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	125 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Evening Night	48 44	40 40	58.9 61.5	50.1 47.2	74 81.6	Yes	No No	Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
26/07/2024 26/07/2024	11:18pm-11:32pm 11:33pm-11:47pm	Attended Attended	North Strathfield North Strathfield	DNVIS Verification DNVIS Verification	N/A N/A	Station box Station box	93 Queen St, NST 83 Queen St, NST	TBM Traverse TBM Traverse	NCA11 NCA11	Night Night	44 44	45 40	61.8 55.8		62.9 71.2	Yes	No No	Yes Yes	Yes Yes	N/A N/A	No No	Yes	Construction activities were inaudible, but the dominant noise sources were cars on Queen St. Construction activities were inaudible, but the dominant noise sources were cars on Queen St.
1/08/2024	08:53am-10:07am	Attended	Burwood			Corner of BWD RD and	8 Burwood Rd, BWD	Saw Cutter, Truck, Excavator 6T, Hand		Night	49	80.5	68.7		94.5	Yes	No.	Yes	Yes	N/A	No	Yes	Construction activities were audible, but traffic on Parramatta Rd was the dominant noise source. However, AFJV has
7/08/2024	09:54pm-10:08pm	Attended	North Strathfield	OOHW Verification	427	Parra RD Queen Street	129 Queen St, NST	Tools Road Profiler, Truck, Bobcat	NCA11	Night	44	88	77		93.9	Yes	No	Yes	Yes	N/A	No	Yes	provided AA. Construction noise level was around 66-69thA. Construction activities were audible and dominant noise source. However, AFJV has provided AA. Construction noise level was around 69-71dbA.
8/08/2024 15/08/2024	10:29pm-10:43pm 09:30pm-09:44pm	Attended	Burwood North Strathfield	OOHW Verification	322 427	Burwood Rd Queen Street	8 Burwood Rd, BWD 129 Queen St, NST	6T excavator, Truck, Concrete saw Line Marking plant	NCA12 NCA11	Night Night	49	77 62	67.7		83.1 79.7	Yes	No No	Yes Yes	Yes	N/A N/A	No No	Yes Yes	Construction activities were audible, but traffic on Parramatta Rd was the dominant noise source. However, AFIV has provided AA. Construction noise level was around 66-69dbA. Construction activities were audible, but so were cars, airplanes, and pedestrians. Construction noise level was around 59-
15/08/2024	09:58pm-10:13pm	Attended	Burwood	OOHW Verification	421	Station box	12 Burton St, Concord	one Agi in operation, three agis idle	NCA12	Evening	47	47	51.7	46.5	72.3	Yes	No	Yes	Yes	N/A	No	Yes	Construction activities were inaudible, but traffic on Burton Street and Parramatta Road was more noticeable
19/09/2024	9:45pm-10:00pm	Attended	Burwood	OOHW Verification	322 and 308	Burwood road	8 Burwood road	Saw Cutter, Truck, Excavator 6T, Hand Tools	d NCA12	Night	49	80.9	66.7	60.7	80.2	Yes	No	yes	yes	N/A	No	Yes	Construction activities were audible, but the dominant noise source was traffic on Burwood road and Parramatta road.
19/09/2024	11:06pm- 11:21pm	Attended	North Strathfield	OOHW Verification	417	Concord road	155 Concord Rd	Operators installing car detection cables in asphalt. No noisy activity wa recorded during the monitoring.	s NCA11	Night	44	88	61.7	52.2	85.4	Yes	No	yes	yes	n/a	No	Yes	No construction noises were audible as works were concluding when monitoring started. Finishing touches were being made to the asphalt. The dominant noise source was traffic on Concord road.
1/10/2024	10:07pm-10:21pm	Attended	Burwood	OOHW Verification	419	Burwood Rd	8 Burwood Rd, BWD	Concrete Saw, Bobcat, Road profiler, hand tools	NCA13	Night	49	81	77.1	66.9	93	Yes	No	Yes	Yes	N/A	No	Yes	Construction work was the main source of noise. As expected, the noise level exceeded the NML during the monitoring period, but it did not surpass the predicted level. Even so, AFIV provided alternative accommodation for the affected residents.
1/10/2024 2/10/2024	09:15pm-09:29pm 10:24pm-10:38pm	Attended Attended	Sydney Olympic Park Five Dock	DNVIS Verification OOHW Verification	N/A 418	Station Box Great North Rd, FDK	2c Figtree Dr. BWD 110 Great North Rd, FDK	6T Excavator, Hand tools 6T Excavator, Hand tools	NCA08 NCA15	Evening Night	51 43	51 90	56.3 70.5	45.7 66.5	74.4 87	Yes Yes	Yes No	Yes Yes	Yes Yes	N/A N/A	No No	Yes Yes	Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise. The construction activities were audible, and the noise level of the construction works was 68 dBA.
4/10/2024	10:35pm-10:49pm	Attended	Five Dock	OOHW Verification	418	Great North Rd, FDK	110 Great North Rd, FDK	6T Excavator, Hand tools	NCA15	Night	43	90	68.6	65.9	81.2	Yes	No	Yes	Yes	N/A	No	Yes	The construction activities were audible, and the noise level of the construction works was 66 dBA. Construction work was the main source of noise. As expected, the noise level exceeded the NML during the monitoring
3/10/2024	10:54pm-11:08pm	Attended	Five Dock	OOHW Verification	419	Burwood Rd	8 Burwood Rd, BWD	Concrete Saw, Bobcat, Road profiler, hand tools	NCA13	Night	49	81	66.8		89.5	Yes	No	Yes	Yes	N/A	No	Yes	period, but it did not surpass the predicted level. Even so, AFJV provided alternative accommodation for the affected residents.
8/10/2024	10:23pm-10:37pm	Attended	Burwood	OOHW Verification		Burwood Rd	4 Burwood Rd, Concord	2 of 6T Excavator, Hand tools, Truck		Night	47	73	67.4		90.2	Yes	No	Yes	Yes	N/A	No	Yes	The construction activities were audible, and the noise level of the construction works was 62 dBA.
9/10/2024	10:52pm-11:06pm	Attended	Five Dock	OOHW Verification	418 N/A	Great North Rd, FDK	110 Great North Rd, FDK	6T Excavator, Hand tools, generator		Night	43	90	71 49.2		94.1 67.7	Yes	No	Yes	Yes	N/A	No Yes	Yes	The construction activities were audible, and the noise level of the construction works was 65 dBA.
10/10/2024	10:00pm-10:14pm 11:02pm-11:16pm	Attended Attended	The Bays Five Dock	DNVIS Verification OOHW Verification	N/A 418	Station Box Great North Rd, FDK	11 Mansfield St, Rozelle 110 Great North Rd, FDK	EWP, Hand tools 6T Excavator, Hand tools, generator	NCA15	Night Night	43	90	70.1		88.9	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes	Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise. Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise.
15/10/2024	09:01pm- 09:15pm	Attended	Sydney Olympic Park	DNVIS Verification	N/A	Station box	2c Figtree Dr. SOP	Tower crane, hand tools, EWP	NCA08	Evening	51	50	53.9		73.3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were audible, but cars and pedestrians were the dominant sources of noise. The noise level of the tower crane when not lifting was 52 dBA, and the noise level during lifting was 58 dBA. Each lift took around 30 seconds, during which the noise level reached 58 dBA. The time between the first and second lift was around 45 -6 minutes. The
15/10/2024	09:38pm- 09:52pm	Attended	The Bays	DNVIS Verification	N/A	Station box	11 Mansfield St, Rozelle	EWP, Hand tools	NCA21	Evening	40	35	51.3	47.5	67.5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	noise level from other equipment was inaudible. Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise.
15/10/2024	11:04pm-11:18pm	Attended	Burwood	OOHW Verification	420	Loftus St, BWD	1A Loftus St, BWD	Truck, hand tools, 6T excavator	NCA13	Night	47	75	56.6		73.3	Yes	No	Yes	Yes	Yes	Yes	Yes	Construction activities were audible, but traffic on Parramatta Rd was the dominant noise source. However, AFJV has
16/10/2024	09:29pm- 09:43pm	Attended	Sydney Olympic Park	DNVIS Verification	N/A	Station box	2c Figtree Dr, SOP	Tower crane, hand tools, EWP	NCA08	Evening	51	50	57.5	50.3	72.7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were audible, but cars and pedestrians were the dominant sources of noise. The noise level of the tower crane when not lifting was 51 dBA, and the noise level during lifting was 54 dBA. Each lift took around 30 seconds, during which the noise level reached 54 dBA. The time between the first and second lift was around 45 - Simulutes. The
16/10/2024	10:52pm-11:04pm	Attended	Five Dock	OOHW Verification	418	Great North Rd, FDK	110 Great North Rd, FDK	6T Excavator, Hand tools, generator, 2X trucks	NCA15	Night	43	90	70.9	61.9	87.8	Yes	No	Yes	Yes	Yes	Yes	Yes	noise level from other equipment was inaudible. The construction activities were audible, and the noise level of the construction works was 61 dBA.
17/10/2024	09:48pm- 10:02pm	Attended	Sydney Olympic Park	DNVIS Verification	N/A	Station box	2c Figtree Dr. SOP	Tower crane, hand tools, EWP	NCA08	Evening	51	50	59.5		79	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were audible, but cars and pedestrians were the dominant sources of noise. The noise level of the tower crane when not lifting was 51.2 dBA, and the noise level during lifting was 53.4 dBA. Each lift took around 30 seconds, during which the noise level reached 53.4 dBA. The time between the first and second lift was around 4–5 minutes. The noise level from other equipment was inaudible.
18/10/2024	08:58pm-09:12pm	Attended	Sydney Olympic Park	DNVIS Verification	N/A	Station box	2c Figtree Dr, SOP	Hand tools, EWP	NCA08	- 0	51	50	58.4		76.2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were inaudible, but cars and pedestrians were the dominant sources of noise. Construction activities were audible, as were cars, airplanes, and pedestrians. The construction noise level was around 61
18/10/2024	10:32pm-10:46pm	Attended	North Strathfield	OOHW Verification	442	Station box	121 Queen st, NST	AGI Truck	NCA11	Night	44	44	65.2	52.3	82.9	Yes	Yes	Yes	Yes	N/A	No	Yes	dBA. AFJV will implement additional mitigation measures to minimize the noise level. Currently, the activity is on hold until the noise mitigation is implemented.
18/10/2024 21/10/2024	11:08pm- 11:22pm 08:17pm- 08:31pm	Attended Attended	The Bays Sydney Olympic Park	DNVIS Verification	N/A N/A	Station box Station box	1 Batty St, Rozelle 2c Figtree Dr, SOP	Forklift, Hand tools Hand tools, EWP	NCA21 NCA08	Night Evening	40 51	35 50	49.2 56.2		77.5	Yes	Yes	Yes Yes	Yes	Yes	Yes	Yes Yes	Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise. Construction activities were inaudible, but cars and pedestrians were the dominant sources noise. When the tower crane began operating, the noise level was \$2.3 all ABIs for around 3-4 minutes, after which the activities became inaudible
21/10/2024	09:27pm-09:41pm	Attended	The Bays	OOHW Verification	437	Robert St, Rozelle	49 Crescent St, Rozelle	Concrete Saw, 6T excavator, truck,	NCA21	Evening	40	66	56.7	48.6	78	Yes	Yes	Yes	Yes	Yes	Yes	Yes	again Construction activities were audible, but cars, and pedestrians were the dominant source of noise. The noise level of the
21/10/2024	09:27pm-09:41pm 09:33pm-09:47pm	Attended	Sydney Olympic Park	DNVIS Verification	437 N/A	Station box	2c Figtree Dr, SOP	hand tools Hand tools, EWP	NCA21 NCA08	Evening	51	50	67.9		96	Yes	Yes	Yes	Yes	Yes	Yes	Ver	concentration activities was 54-57dBA. Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise.
22/10/2024	10:16pm- 10:30pm	Attended	The Bavs	DNVIS Verification	N/A N/A	Station box Station box	1 Batty St, Rozelle	Forklift, Hand tools	NCA21	Night	40	35	55		68.8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were inaudiole, but cars, and pedestrians were the dominant source of noise. Construction activities were inaudiole, but shipment loading, and pedestrians were the dominant source of noise.
22/10/2024	11:10pm-11:24pm	Attended	Five Dock	OOHW Verification	433	Great North Rd, FDK	110 Great North Rd, FDK	300T Mobile crane, 3 Trucks	NCA15	Night	43	71	66.8		84.3	Yes	No	Yes	Yes	Yes	Yes	Yes	The construction activities were audible, and the noise level of the construction works was 65 dBA.
25/10/2024	07:00pm-07:14pm	Attended	North Strathfield	OOHW Verification	442	Station box	121 Queen st, NST	2 AGIs Truck	NCA11	Evening	44	52	61.6		81.2	Yes	Yes	Yes	Yes	N/A	No	Yes	The discharging Agi was inaudible, while the idle Agi was slightly audible because its location was not covered by the noise mats installed on the wall. The dominant noise sources were cars and pedestrians. It's important to note that during the first 3 minutes, the idle Agi was on. I asked the supervisor to turn it off to ensure the discharging Agi was not audible. When the idle Agi was off, the recorded noise level was 43.7 dBA, which was due to pedestrians nearby.
25/10/2024	09:26pm- 09:40pm	Attended	Sydney Olympic Park	DNVIS Verification	N/A	Station box	2C Figtree Dr, SOP	Hand tools, EWP, tower crane	NCA08	Evening	51	50	56.8	51.4	74.6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were inaudible; however, cars and pedestrians were the dominant sources of noise. The tower crane operated for approximately 6 minutes, with a noise level of \$3.2 dBA.
25/10/2024	10:21pm- 10:35pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Forklift, Hand tools	NCA21	Night	40	35	54.7	51.9	68.2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Construction activities were audible, but cars, and pedestrians were the dominant source of noise.

25/10/2024	10:55pm-11:09pm	Attended	Five Dock	OOHW Verification	418	Great North Rd. FDK	110 Great North Rd, FDK	Bobcat, Profiler, 2 Trucks, hand tools	NCA15	Night	43	90	74.3	69.8	82.2	Yes	No	Yes	Yes	Yes	Yes	Yes The o	e construction activities were the dominant source of noise, and the noise level of the construction works was 68-77
28/10/2024	09:14pm- 09:28pm	Attended	Sydney Olympic Park		N/A		2C Figtree Dr, SOP	Hand tools, EWP, tower crane	NCA08				60.9	48.7	81.8	Yes	Yes	Yes		Yes	Yes	dBA.	A. nstruction activities were inaudible; however, cars and pedestrians were the dominant sources of noise. The tower
28/10/2024	09:14pm- 09:28pm	Attended	Sydney Olympic Park	DINVIS Verification	N/A	Station box	2C Figtree Dr, SOP	Hand tools, EWP, tower crane	NCAU8	Evening	21	50	60.9	48.7	81.8	res	res	res		res	res	crane	ne operated for approximately 4 minutes, with a noise level of 52.1 dBA.
30/10/2024	09:41pm- 09:55pm	Attended	Sydney Olympic Park	DNVIS Verification	N/A	Station box	2C Figtree Dr, SOP	Hand tools, EWP, tower crane	NCA08	Evening	51	50	63.7	49.9	93.6	Yes	Yes	Yes	Yes	Yes	Yes		nstruction activities were audible; however, cars and pedestrians were the dominant sources of noise. The tower crane erated for approximately 7 minutes, with a noise level of 52.1 dBA.
																							e tower crane was operating during the noise monitoring period, and its noise level was recorded both when idle and ile lifting. The noise level of the idle tower crane was 48.9 dBA, which increased to 54-57 dBA when lifting. The crane's
30/10/2024	10:22pm- 10:36pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Forklift, Hand tools, tower crane	NCA21	Night	40	35	54.4	48.9	78.9	Yes	Yes	Yes	Yes	Yes	Yes	Yes posit	sition while lifting materials significantly impacted the noise level, with the highest recorded level being 57 dBA when
																							crane engine faced the monitoring location. The tower crane was idle for most of the noise monitoring period, sulting in a low LA90 of 48.9 dBA.
30/10/2024	11:03pm-11:17pm	Attended	North Strathfield	OOHW Verification	444	Station box	93 Queen st, NST	Drill, hand tools	NCA11	Night	44	44	65.5	47.6	86	Yes	Yes	Yes	Yes	N/A	No	Ves Cons	nstruction work was audible, but cars and pedestrians were the dominant noise sources during the noise monitoring.
			North Strathfield	DNVIS Verification									58.4				Yes		Yes	N/A	No	The r	e noise level for the construction work was 69.8 dBA e noise level of the AFJV work was inaudible during the monitoring period, with traffic and pedestrians as the dominant
31/10/2024	11:06pm-11:20pm	Attended	North Strathneld	DINVIS Verification	N/A	Station box	123 Queen st, NST	Work inside the station box	NCA11	Night	44	44	58.4	46	73.6	Yes	res	Yes	res	N/A	NO		urces of noise.
																							e tower crane was operating during the noise monitoring period, and its noise level was recorded both when idle and ille lifting. The noise level of the idle tower crane was 49.7 dBA, which increased to 54-57 dBA when lifting. The crane's
31/10/2024	09:44pm- 09:58pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Forklift, Hand tools, tower crane	NCA21	Night	40	35	52.8	49.7	66.2	Yes	Yes	Yes	Yes	Yes	Yes		sition while lifting materials significantly impacted the noise level, with the highest recorded level being 57 dBA when crane engine faced the monitoring location. The tower crane was idle for most of the noise monitoring period,
																							ulting in a low LA90 of 49.7 dBA.
1/11/2024	10:39pm-10:53pm	Attended	North Strathfield	OOHW Verification	442	Station box	121 Queen st, NST	One Agi Truck	NCA11	Night	44	44	57.8	46.4	75.4	Yes	Yes	Yes	Yes	N/A	No		e Agi was idle for 9 minutes during the noise monitoring period, then commenced discharging for approximately 3-4
																						minu	nutes. The noise level of the idle Agi was inaudible, while the noise level during discharge was around 52-54 dBA.
8/11/2024	09:06pm-09:20pm	Attended	North Strathfield	OOHW Verification	442	Station box	121 Queen st, NST	2 AGIs Truck	NCA11	Evening	52	52	58.8	48.9	78.8	Yes	Yes	Yes	Yes	N/A	No		ring the noise monitoring period, one Agi was discharging, and one was idle; both Agis were inaudible, with traffic and destrians being the dominant noise sources. The discharging period lasted around 9–11 minutes, as normal speed was
		Asserted a	The David	DANGE Vanificantia	N/A				NCADA	Foresteen		25	48.1	42.4	CF. A	V	V	Yes	Υρς	Yes	Yes	used	ed.
8/11/2024	09:56pm- 10:10pm	Attended	The Bays	DNVIS Verification	N/A	Station box	37 Hornsey St, Rozelle	Tower crane	NCA21	Evening	50	35	48.1	42.4	65.1	Yes	Yes	res	res	res	res		e dominant noise source was the traffic and pedestrians, while the tower crane was inaudible. e dominant noise source was the maintenance of shipments, while the tower crane was in use for around 6 minutes
8/11/2024	10:30pm- 10:44pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Tower crane	NCA21	Night	40	35	55.6	51.6	65.2	Yes	Yes	Yes	Yes	Yes	Yes		ring the noise monitoring period. The noise level of the tower crane was barely audible due to the noise from the
12/11/2024	08:48pm-09:02pm	Attended	North Strathfield	OOHW Verification	442	Station box	121 Queen st, NST	2 AGIs Truck	NCA11	Evening	52	52	62.3	48.9	90.1	Yes	Yes	Yes	Yes	N/A	No	Yes Durin	ring the noise monitoring period, one Agi was discharging, and one was idle; both Agis were inaudible, with traffic and
																						pede	destrians being the dominant noise sources.
12/11/2024	10:25pm-10:39pm	Attended	Five Dock	OOHW Verification	418	Great North Rd, FDK	110 Great North Rd, FDK	2 Trucks, hand tools, Concrete saw	NCA15	Night	43	90	69.8	61.1	83.7	Yes	No	Yes	Yes	Yes	Yes		e construction activities were the dominant source of noise, and the noise level of the construction works was 74 dBA.
13/11/2024	10:01pm-10:15pm	Attended	North Strathfield	OOHW Verification	442	Station box	123 Queen st, NST	2 AGIs Truck	NCA11	Night	44	44	70.7	49.5	102.7	Yes	Yes	Yes	Yes	N/A	No		ring the noise monitoring period, one Agi was discharging, and one was idle; both Agis were inaudible, with traffic and destrians being the dominant noise sources.
13/11/2024	10:54pm-11:08pm	Attended	Five Dock	OOHW Verification	418	Great North Rd, FDK	110 Great North Rd, FDK	2 Trucks, hand tools, Concrete saw	NCA15	Night	43	90	70.7	64.7	81.8	Yes	No	Yes	Yes	Yes	Yes	Yes The	e construction activities were the dominant source of noise, and the noise level of the construction works was 74 dBA.
15/11/2024	09:35pm-09:48pm	Attended	North Strathfield	OOHW Verification	442	Station box	123 Queen st, NST	2 AGIs Truck	NCA11	Night	52	52	65.5	50.1	80.6	Yes	Yes	Yes	Yes	N/A	No		ring the noise monitoring period, one Agi was discharging, and one was idle; both Agis were inaudible, with traffic and
15/11/2024	10:20pm-10:34pm	Attended	Five Dock	OOHW Verification	418	Great North Rd, FDK	110 Great North Rd, FDK	2 Trucks, hand tools, Concrete saw	NCA15	Night	43	90	66	58.3	81.4	Ves	No	Ves	Ves	Yes	Yes		destrians being the dominant noise sources. e construction activities were the dominant source of noise, and the noise level of the construction works was 58 dBA.
								Saw concrete, hand tools, 6T														Cons	nstruction activities were dominant source of noise. However, AFJV has provided AA. Construction noise level was
18/11/2024	09:10pm-09:24pm	Attended	Burwood	OOHW Verification			4 Burwood Rd, Concord	excavator	NCA12	Evening	47	77.6	72.1	65.1	89.6	Yes	No	Yes	Yes	Yes	Yes		ound 69 dBA.
19/11/2024 20/11/2024	11:13pm-11:27pm	Attended Attended	Five Dock	OOHW Verification	433 441	Great North Rd, FDK	110 Great North Rd, FDK	300T Mobile crane, 3 Trucks	NCA15 NCA08	Night Evening	43	51	59.7	69 51.1	92.4	Yes	No Yes	Yes Yes	Yes	Yes	Yes	Cons	e construction activities were audible, and the noise level of the construction works was 65 dBA. Instruction activities were inaudible; however, cars and pedestrians were the dominant sources of noise. The tower
20/11/2024	08:08pm- 08:22pm	Attended	Sydney Olympic Park	OOHW Verilication	441	Station box	2C Figtree Dr, SOP	Truck, tower crane	NCAUS	Everillig	31	31	33.7	31.1	32.4	ies	res	res	res	res	res		ne loaded the components onto truck during the noise monitoring period. e dominant noise source was the maintenance of shipments, while the tower crane was not in use during the noise
20/11/2024	09:38pm- 09:52pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Forklift, Hand tools	NCA21	Night	48	35	51	49.8	62.3	Yes	Yes	Yes	Yes	Yes	Yes		onitoring period.
21/11/2024	09:39pm- 09:53pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Forklift, Hand tools	NCA21	Evening	48	35	54.9	51.2	66.4	Yes	Yes	Yes	Yes	Yes	Yes	Yes The o	e dominant noise source was the ships loading, while the tower crane was not in use during the noise monitoring
																							to tower crane was operating, and the noise level of the crane was 49–51 dBA, while the background noise was around
21/11/2024	10:55pm- 11:09pm	Attended	The Bays	DNVIS Verification	N/A	Station box	1 Batty St, Rozelle	Tower crane	NCA21	Night	48	35	54.3	50.9	65.1	Yes	Yes	Yes	Yes	Yes	Yes		-52 dBA. The noise generated by the crane was audible among other noise sources. The noise level from the ship ding was 54–60 dBA. This noise was similar to a vacuum sound, which increased briefly and then decreased, leading to a
25/44/202	00.20 00.24-	Asserta 1	D	Dange Verlere	21/2		AC huntar Co Const.		NCAAS	F. contra	40	40	CO.4	45.7	20.5	West		V	W	V	V	highe	her average noise level.
25/11/2024	09:20pm-09:34pm	Attended	Burwood	DNVIS Verification	N/A	Station Box	16 burton St, Concord	Pump	NCA12	Evening	48	48	60.1	45.7	80.6	Yes	No	Yes	Yes	Yes	Yes		nstruction works were inaudible, the dominant source of noise was traffic e construction activities were the dominant source of noise, and the noise level of the construction works was 79-81
26/11/2024	10:10pm-10:24pm	Attended	Five Dock	OOHW Verification	418	Great North Rd, FDK	110 Great North Rd, FDK	2 Trucks, hand tools, Concrete saw	NCA15	Night	43	90	77.9	53.1	89.9	Yes	No	Yes	Yes	Yes	Yes	dBA.	A.
28/11/2024	10:57pm-11:11pm 09:16pm-09:30pm	Attended Attended	Five Dock North Strathfield	OOHW Verification	433	Great North Rd, FDK Queen St	110 Great North Rd, FDK	300T Mobile crane, 2 Trucks Hand Tools	NCA15 NCA11	Night Evening	43 52	71	65.3	54.1 52.2	83.2	Yes	No Yes	Yes	Yes	Yes N/A	Yes		e construction activities were audible, and the noise level of the construction works was 62 dBA. ring the noise monitoring period, hand tools were used without generating any noise impact. The dominant noise
3/12/2024	09:16pm-09:30pm 09:41pm-09:55pm	Attended	North Strathfield Burwood	DNVIS Verification	409 N/A	Queen St Station Box	27 Beronga St 23 Burton St. Concord		NCA11 NCA12	Evening	48	/5 49	61.9	45.9	85.1 81.3	Yes	Tes No	Yes	Yes	N/A Yes	No Yes	sour	urce was traffic nstruction works were inaudible, the dominant source of noise was traffic
3/12/2024	10:51pm-11:05pm	Attended	Burwood	DNVIS Verification	N/A	Station Box Station Box	16 Burton St, Concord	Tunnelling support equipment Tunnelling support equipment	NCA12	Night	47	47	48.8	44	72.8	Yes	No	Yes	Yes	Yes	Yes		nstruction works were inaudible, the dominant source of noise was traffic
4/12/2024	10:49pm-11:03pm	Attended	Burwood	DNVIS Verification	N/A	Station Box	23 Burton St, Concord	Tunnelling support equipment	NCA12	Night	47	47	55.8	47.6	83.7	Yes	No	Yes	Yes	Yes	Yes	Yes Cons	nstruction works were inaudible, the dominant source of noise was traffic
5/12/2024	09:35pm-09:48pm	Attended	North Strathfield	OOHW Verification	442	Station box	121 Queen st, NST	2 AGIs Truck	NCA11	Evening	52	52	62	47.3	80.1	Yes	Yes	Yes	Yes	N/A	No		ring the noise monitoring period, one Agi was discharging, and one was idle; both Agis were inaudible, with traffic and destrians being the dominant noise sources.
6/12/2024	10:30pm-10:44pm	Attended	Burwood	DNVIS Verification	N/A	Station Box	23 Burton St, Concord	Tunnelling support equipment	NCA12	Night	47	47	57.8	45.8	73.2	Yes	No	Yes	Yes	Yes	Yes	Yes Cons	nstruction works were inaudible, the dominant source of noise was traffic
17/12/2024	09:05pm-09:19pm	Attended	Sydney Olympic Park	OOHW Verification	N/A	Station box	2C Figtree Dr, SOP	Foklift, Bobcat	NCA08	Evening	53	53	59	51.4	79.9	Yes	Yes	Yes	Yes	Yes	Yes	Yes Cons	nstruction activities were inaudible; however, cars, pedestrians, and windy weather were the dominant sources of ise.
17/12/2024	10:08pm-10:22pm	Attended	Five Dock	OOHW Verification	454	Station box	7 East St, FDK	Tunnelling support equipment	NCA14	Night	38	38	56.9	51.9	84.2	Yes	No	Yes	Yes	Yes	Yes		construction activities were audible, and the noise level of the construction works (hum) was 47 dBA. The dominant
																						noise	ise sources were windy weather, cars, and pedestrians.

Noise Monitoring Report

Project:	Sydney Metro West - Package	- Centr	al Tunnellin	g	Report No.	20241126-FDk	(-01					
Site:	FDK				Monitoring type:	Attended $oxtimes$ Unattended $oxtimes$						
Data collected by:	Osamah Naji				Date:	26/11/2024						
_	DNVIS Verification											
Purpose of monitoring:	OOHW Permit Verification	\boxtimes	OOHW#:	418	Time:	Start: 10:	: 10pm	End: 10:24p	om			
	Complaint Response											
								ı				
Construction noise	source and description	n of ac	tivity:		Monitoring location	n/s:	NCA	NML (dB)	Prediction (dB)			
Truck, hand too	ls, concrete saw				110 Great North Rd	, FDK	15	43	90			
Meteorological con	ditions											
Temperature (°C):	23				Cloud cover (%):	10						
Wind (km/hr and direction)	5				Rainfall:	No						
Instrumentation details (include	Rion NL-42 C36211				Calibration valid until:	07/05/2025						
serial number):					Field Calibrated?	YES ⊠ NO □						
Assessment of light spill:												
Instrumentation an	d method:											
Tripod 1.5-meter H 15 minutes Attended OOHW ve	leight, Rion NL-42 erification, nearest res	identi	al receiver									
Results summary:												
 (i) Was NML exceeded during monitoring period? (ii) Was DNVIS prediction exceeded during monitoring period? (iii) Was exceedance/s the result of AFJV works? (iv) Are all reasonable and feasible mitigation measures implemented? (if 'No' potential NCR to be raised, discuss with Environment Manager) 												
•	If answered yes to (iii) please indicate what mitigation measures have been proactively implemented? Also add examples of other mitigation measures observed during monitoring.											

- 1. Works restricted to the work zone identified in the noise assessment.
- 2. Works and plant selection have been selected to reduce impact on residents as far as reasonably practicable.
- 3. All efforts are being made to schedule noisy works to the earliest part of the shift, with sawing and hammering being limited to 12am.
- 4. Specific sequencing of the construction activities drives the work program to priorities minimizing noise impacts on neighbouring residents and the local community.
- 5. Additional mitigation such as noise mats and enclosures will be employed around noisy equipment where practicable.
- 6. Noise monitoring at sensitive receptors will be used to confirm noise impacts predicted during modelling. Work will be undertaken to reduce impacts should thresholds look set to be exceeded.
- 7. Potentially affected receivers will be notified. Where necessary additional noise mitigation measures from the Sydney Metro Construction Noise and Vibration Standard (CNVS) have been specified in table 14 of the accompanying noise assessment reports and indicated for each receiver in Appendix B of the report.
- 8. The workforce induction will include particular emphasis on positive behavioural practices such as avoiding unnecessary shouting or loud radios on site.
- 9. Priority has been given to the use of quieter and less vibration-emitting construction methods and plant alternatives where feasible and reasonable.
- 10. The noise levels of the plant and equipment will meet the maximum noise requirements of the CNVS.
- 11. Noise-emitting plant to be directed away from sensitive receivers where possible and the stationary plant will be located behind a structure or enclosed if practicable.
- 12. All plant movement alarms are to be non-tonal as per project policy.
- 13. Plant & equipment to be switched off when not in use.

10. I fall a equipment to be switched on when not in doc.
Results summary description: (ie, including dominant noise sources, contribution of project activities, non-construction related sources, highest noise source, etc.):
The construction activities were the dominant source of noise, and the noise level of the construction works was 79-81 dBA.

af N Permit 418

10:10-10:23

26/11/24

osamol

Location	Time	Observations	LAeq dBA	LA10 dBA	dBA	LAmax dBA
	10:10	76-3 Concrete Saw + Fraffre				
	10111	79-1 Concrete Saw + Traffic				
FDK	10:12	82.2 ~ ~ ~ ~				
	10:13	79-3 Concrete son				
		89.9 bile			-	20
1	0/15	78.7 concrete son	77.9	82.8	53-(849
	0)16	81.6 concrete sas + Traffix				
-		83:9 u u u				
		69.3 Trashic				
		58.4 Court Peda Dier				
		67-8 Transfic				
	100 m	51-9 peder Irjan				
,	0.22	66-7 Traffic				
1	0:23	59-8 Cors + Recled In a				

Work Location

Work area.

Noise Monitoring Report

Project:	Sydney Metro West - Package	- Centr	al Tunnellin	3	Report No.	20241030-NST	-01				
Site:	NST				Monitoring type:	Attended D	⊠ Una	attended			
Data collected by:					Date:	30/10/2024					
Purpose of monitoring:	DNVIS Verification										
	OOHW Permit Verification	\boxtimes	OOHW#:	444	Time:	Start: 11:03 pm End: 11:17pm					
	Complaint Response										
Construction noise source and description of activity:					Monitoring location	/s:	NCA	NML (dB)	Prediction (dB)		
Drill, hand tools						-	11	44	74		
Meteorological conditions											
Temperature (°C):	22				Cloud cover (%):	25					
Wind (km/hr and direction)	5				Rainfall:	No					
Instrumentation details (include	Rion NL-42				Calibration valid until:	07/05/2025					
serial number):					Field Calibrated?	YES ⊠ NO □					
Assessment of light spill:											
Instrumentation an	d method:										
Tripod 1.5-meter H 15 minutes	leight, Rion NL-42										
Attended OOHW ve	erification, nearest res	identia	l receiver								
Results summary:											
(i)	Was NML exceeded of	_					YES		NO 🗆		
(ii) (iii)	Was DNVIS predictio Was exceedance/s tl		_		ing period?		YES I YES		NO □ NO ⊠		
(iv)	Are all reasonable an	d feas	ible mitigati	on meas)	YES		NO 🗆		
(if 'No' potential NCR to be raised, discuss with Environment Manager) If answered yes to (iii) please indicate what mitigation measures have been proactively implemented? Also add examples of other mitigation measures observed during monitoring.											

- 1) All plant movement alarms are to be non-tonal, as per project policy.
- 2) Noise-emitting plants should be directed away from sensitive receivers where possible.
- 3) Plant and equipment should be switched off when not in use.
- 4) The workforce induction will include a particular emphasis on positive behavioural practices, such as avoiding unnecessary shouting or loud radios on-site, and maintaining low voice communication.
- 5) Sequencing of construction activities should prioritize minimizing noise impacts on neighbouring residents and the local community, especially during late hours of the night.

Results summary description: (ie, including dominant noise sources, contribution of project activities, non-construction highest noise source, etc.):	related sources,

Construction work was audible, but cars and pedestrians were the dominant noise sources during the noise monitoring. The noise level for the construction work was 69.8 dBA

Location		e Observati	ons	30	110/24		O8	LAID	LA90	LAmax
							dBA	dBA	dBA	dBA
	11:0	1 69-	8 1	fand d	ools (D	rill)				
		4 71-1		u u	+ 1	Fallic				
6	11:0	5 49-	7 /	celed						
usj	11:0	6 60-1	1	Hand	fools					
	11:0:	7 76.0		Traffi						
	110	8 68.0	/	· ·			65.5	68-7	47.6	86
	11:00	9 47 -=	7	Reeld	Han					
	11:18	0 48.4	1	a						
		70-1		Hand	facels					
		2 48-4	1	Peels	ha	4				
	11:12	3 57.1	1	Cars	awa	٥				
	The second second	486-		bike					and the same	-6
	0.00	5 55-		Car						
	11:1	6 68-		Peda	Air-				1	
	11:12	7 47-	5	feela						

Monitoring Location

Agi Location

Site location

Noise Monitoring Report

Project:	Sydney Metro West -	tral Tunnellii	ng Package	Report No.	20241003-BI	ND-01							
Site:	BWD			Monitoring type:	Attended	⊠ U	Inattended	d 🗆					
Data collected by:				Date:	03/10/2024								
Purpose of monitoring:	DNVIS Verification												
	OOHW Permit Verification	\boxtimes	OOHW#:	419	Time:	Start: 1	0:54pm	End: 11:0	Bpm				
	Complaint Response												
	Construction noise source and description of activity. Manifesting location /c. NCA NRAL Description												
Construction noise source and description of activity:					Monitoring location	n/s:	NCA	NML (dB)	Prediction (dB)				
Concrete saw, hand	l tools, Agi, Bobcat, Ro	ad Pr	ofiler				13	49	81				
Meteorological con	ditions												
Temperature (°C):	15				Cloud cover (%):	26							
Wind (km/hr and direction)	4				Rainfall:	No							
Instrumentation details (include	Rion NL-42				Calibration valid until:	07/05/2025							
serial number):					Field Calibrated?	YES ⊠ NO □							
Assessment of light spill:													
Instrumentation an	d method:												
Tripod 1.5-meter H 15 minutes	leight, Rion NL-42												
Attended OOHW ve	erification, nearest res	ident	ial receiver										
Results summary:													
(i)	Was NML exceeded o			-			YESD		NO□				
(ii) (iii)	Was DNVIS predictio Was exceedance/s tl			-	period?		YES[YES[NO⊠ NO⊠				
(iv)	Are all reasonable an	d fea	sible mitiga	tion measure	•		YES		NO□				
	(iii) please indicate wh of other mitigation me		_			emented?							

- 1. Works restricted to the work zone identified in the noise assessment.
- 2. Works and plant selection have been selected to reduce impact on residents as far as reasonably practicable.
- 3. All efforts are being made to schedule noisy works to the earliest part of the shift, with sawing and hammering being limited to 12am.
- 4. Specific sequencing of the construction activities drives the work program to priorities minimizing noise impacts on neighbouring residents and the local community.
- 5. Additional mitigation such as noise mats and enclosures will be employed around noisy equipment where practicable.
- 6. Noise monitoring at sensitive receptors will be used to confirm noise impacts predicted during modelling. Work will be undertaken to reduce impacts should thresholds look set to be exceeded.
- 7. Potentially affected receivers will be notified. Where necessary additional noise mitigation measures from the Sydney Metro Construction Noise and Vibration Standard (CNVS) have been specified in table 14 of the accompanying noise assessment reports and indicated for each receiver in Appendix B of the report.
- 8. The workforce induction will include particular emphasis on positive behavioural practices such as avoiding unnecessary shouting or loud radios on site.
- 9. Priority has been given to the use of quieter and less vibration-emitting construction methods and plant alternatives where feasible and reasonable.
- 10. The noise levels of the plant and equipment will meet the maximum noise requirements of the CNVS.
- 11. Noise-emitting plant to be directed away from sensitive receivers where possible and the stationary plant will be located behind a structure or enclosed if practicable.
- 12. All plant movement alarms are to be non-tonal as per project policy.
- 13. Plant & equipment to be switched off when not in use.

<u> </u>
Results summary description: (ie, including dominant noise sources, contribution of project activities, non-construction related sources, highest noise source, etc.):
Construction work was the main source of noise. As expected, the noise level exceeded the NML during the monitoring period, but it did not surpass the predicted level. Even so, AFJV provided alternative accommodation for the affected residents.

3/10/24

10:54 pm - 11:08 pm ogamel

Location	Time	Observations			LAeq dBA	dBA	dBA	LAmax dBA
	10:54	62.3	excovalor	+ Traffic				
	10:55	66-4	L	4				
3W3)	0,56	60.9	u	~				
1	0:57	69-7	4	~				
l	158	64-5	4	~				
1	0159	63-1	~	h	11			
	1.00	66-8	~~	7	66.8	68-7	59.7	89.
1	1:01	75-1	u	~				
1	por	81-5	~					
	150	59.7	~	~				
		58-3						
14	.05	62.5	4	~				
			L	ı				
	1:07	89-5	580 rt	- Corr				
1	1.08	63-4	execus	cov ev + Fralls	7			

Noise Monitoring Report

Project:	Sydney Metro West – Central Tunnelling Package				Report No.	20241010-TBY	-01			
Site:	ТВУ				Monitoring type:	Attended	Unatt	ended		
Data collected by:				Date:	10/10/2024					
Purpose of monitoring:	DNVIS Verification OOHW Permit Verification Complaint Response		OOHW#:		Time:	Start: 10:00pm End: 10:14pm				
Construction noise source and description of activity:					Monitoring location	/s:	NCA	NML (dB)	Prediction (dB)	
EWP, Hand tools,						21	40	35		
Meteorological conditions										
Temperature (°C):	19				Cloud cover (%):	15				
Wind (km/hr and direction)	5				Rainfall:	No				
Instrumentation details (include serial number):	Rion NL-42			-	Calibration valid until:	07/05/2025				
·					Field Calibrated?	YES	⊠	NO		
Assessment of light spill:	No Issue									
Instrumentation an	d method:									
Tripod 1.5-meter H 15 minutes Attended DNVIS ve	eight, Rion NL-42 rification, nearest resi	dentia	receiver							
Results summary:										
	 (i) Was NML exceeded during monitoring period? (ii) Was DNVIS prediction exceeded during monitoring period? (iii) Was exceedance/s the result of AFJV works? 						YESD YESD YESD YESD	X	NO□ NO□ NO⊠ NO□	
	If answered yes to (iii) please indicate what mitigation measures have been proactively implemented? Also add examples of other mitigation measures observed during monitoring.									

- 1) All plant movement alarms are to be non-tonal, as per project policy.
- 2) Noise-emitting plants should be directed away from sensitive receivers where possible.
- 3) Plant and equipment should be switched off when not in use.
- 4) The workforce induction will include a particular emphasis on positive behavioural practices, such as avoiding unnecessary shouting or loud radios on-site, and maintaining low voice communication.
- 5) Sequencing of construction activities should prioritize minimizing noise impacts on neighbouring residents and the local community, especially during late hours of the night.

Results summary description: (ie, including dominant noise sources, contribution of project activities, non-construction related sources, highest noise source, etc.):
Construction activities were inaudible, but cars, and pedestrians were the dominant source of noise.

Crane Location

Noise Monitoring Report

Project:	Sydney Metro West - Package	- Centr	al Tunnelling	g	Report No.	20241120-SOP-01					
Site:	SOP				Monitoring type:	Attended ⊠ Unattended					
Data collected by:					Date:	20/11/2024					
Purpose of monitoring:	DNVIS Verification OOHW Permit Verification Complaint Response	⊠	OOHW#:	441	Time:	Start: 08:08pm End: 08:22pm					
Construction noise source and description of activity:					Monitoring location	/s:	NCA	NML (dB)	Prediction (dB)		
Truck, tower crane							8	53	53		
Meteorological conditions											
Temperature (°C):	16				Cloud cover (%):	30					
Wind (km/hr and direction)	11				Rainfall:	No					
Instrumentation details (include	Rion NL-42				Calibration valid until:	07/05/2025					
serial number):					Field Calibrated?	YES ⊠ NO					
Assessment of light spill:	No Issue										
Instrumentation an	d method:										
Tripod 1.5-meter H 15 minutes Attended OOHW ve	eight, Rion NL-42 erification, nearest res	identia	ıl receiver								
Results summary:											
(i) (ii) (iii) (iv)	Was NML exceeded Was DNVIS prediction Was exceedance/s the Are all reasonable ar (if 'No' potential NCR	n exce ne resu nd feas	eded during Ilt of AFJV w ible mitigati	g monitor orks? ion meas	ures implemented?	ı	YESD YESD YESD YESD	X	NO□ NO□ NO⊠ NO□		
If answered yes to (iii) please indicate what mitigation measures have been proactively implemented? Also add examples of other mitigation measures observed during monitoring.											

- 1) All plant movement alarms are to be non-tonal, as per project policy.
- 2) Noise-emitting plants should be directed away from sensitive receivers where possible.
- 3) Plant and equipment should be switched off when not in use.
- 4) The workforce induction will include a particular emphasis on positive behavioural practices, such as avoiding unnecessary shouting or loud radios on-site, and maintaining low voice communication.
- 5) Sequencing of construction activities should prioritize minimizing noise impacts on neighbouring residents and the local community, especially during late hours of the night.

es,

Construction activities were inaudible; however, cars and pedestrians were the dominant sources of noise. The tower crane loaded the components onto truck during the noise monitoring period.

af JV				20/1	1124		C	rza	ud
Location 1	fime (Observations	4/87	A La	T Vand	LAeq dBA	dBA	dayo	dBA
		53.Y					10		
		92-4					- 51		
S	27/0	71.9	C	ars					
8	2:11	68-3	ai	(plan	e				
8	2.12	51.9	Per	la m	on				
8	113	59.8	(N)	~		ea 7	61.1	151.1	92
10.5		50.5	100	~		1''	2000		
		63.7	C	ers					
		51.4	P	edd d	na				
		71-1	0	IN	d'a				
8	3')8	50.9	P	edel car ed s Car					
8	1:19	56.3		Cerr -			-	-	
8	20	52-4		car	*				
8	21	62.6		1 ger					
8	1,55	58-1							
								-	

Attended Noise Monitoring Rion-42-

Attended Noise Monitoring Rion-42-

Attended Noise Monitoring Rion-42-

Attended Noise Monitoring Rion-42-

Rozelle

APPENDIX A	. (ii) – SOUN	ND POWER	LEVELS

Location	Plant	Monitored SWL (dB(A))	Compliant with CNVS Table 13	Date
NST	Agi (Drop pipe)	91	Not listed	17/10/2024
SOP	Tower Crane	104	Not Listed	29/10/2024
SOP	Crawler Crane	97	Not Listed	29/10/2024

AFJV| Bi-annual Monitoring Report July 2024 - December 2024 SMWSTCTP-AFJ-1NL-EN-RPT-000026 Rev00

APPENDIX A (iii) – UNATTENDED NOISE MONITORING RESULTS

The Bays

Shared access areas

Ancillary facility location

Indicative location of unattended noise monitor

Map Creation Date: 6/14/2023

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.

Five Dock

Ancillary facility location

Indicative location of unattended noise monitor

Indicative location of unattended vibration monitor

Map Creation Date: 6/9/2023

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.

Burwood North

Indicative location of unattended noise monitor

Indicative location of unattended vibration monitor

Map Creation Date: 6/9/2023

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.

ArcGIS Web Map

North Strathfield

Indicative location of unattended noise

Indicative location of unattended vibration

Map Creation Date: 5/30/2023

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.

Olympic Park

Indicative location of unattended noise

Indicative location of unattended vibration

Map Creation Date: 6/9/2023

This map is shown for reference purposes only. Acciona Ferrovial JV provides this information "as is" with the understanding that it is not guaranteed to be accurate, correct or complete and conclusions drawn from such information are the responsibility of the user. While every effort is made to ensure the information displayed is as accurate and current as possible, Acciona Ferrovial JV will not be held responsible for any loss, damage or inconvenience caused as a result of reliance on such information or data.

Project SOP
Project maintainer -

Time frame 2024-10-18 00:00 - 2024-10-26 00:00 (Australia/Sydney)

Measuring point N1 #14624

Description

Sensor type S50
Sensor serial no. 14624
Master(s) serial no. 108060
Latest calibration 2024-08-14

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 87.6 dBA, Leq: 69.2 dBA, Lcustom: null

X-span 2024-10-18 00:00 - 2024-10-26 00:00

Y-span Lmax, Leq: dBA: 38.23 - 89.91, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 87.6 dBA
 69.2 dBA

 Date
 2024-10-25
 2024-10-24

 Time
 06:18:00
 08:00:00

08:00:00 -

Project SOP
Project maintainer -

Time frame 2024-11-15 00:00 - 2024-11-22 00:00 (Australia/Sydney)

Measuring point N1 #14624

Description

Sensor type S50
Sensor serial no. 14624
Master(s) serial no. 108060
Latest calibration 2024-08-14

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 89 dBA, Leq: 71.9 dBA, Lcustom: null

X-span 2024-11-15 00:00 - 2024-11-22 00:00

Y-span Lmax, Leq: dBA: 38.51 - 91.31, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 89 dBA
 71.9 dBA

 Date
 2024-11-17
 2024-11-17

 Time
 15:40:00
 19:38:00

38:00

SOP **Project** Project maintainer

Time frame 2024-07-05 00:00 - 2024-07-13 00:00 (Australia/Sydney)

N1 #14624 Measuring point

Description

S50

Sensor type Sensor serial no. 14624 Master(s) serial no. 108060 Latest calibration 2023-08-02

Standard (02) Lmax + Leq 30-105 dBA Fast

Unit

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes Table threshold High

Max Lmax: 91.9 dBA, Leq: 69.2 dBA, Lcustom: null

Lcustom

2024-07-05 00:00 - 2024-07-13 00:00 X-span

Y-span Lmax, Leq: dBA: 41.9 - 93.93, Lcustom: dBA: 9007199254740991 - -9007199254740991

Lmax Leq 91.9 dBA Max 69.2 dBA 2024-07-07 2024-07-08 Date 23:30:00 11:30:00 Time

SOP **Project** Project maintainer

Time frame 2024-08-16 00:00 - 2024-08-24 00:00 (Australia/Sydney)

N1 #14624 Measuring point

Description Sensor type

S50 10923 Sensor serial no.

108060 Master(s) serial no. Latest calibration 2024-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes Table threshold High

Max Lmax: 92.9 dBA, Leq: 70.8 dBA, Lcustom: null

Leq

Lcustom

2024-08-16 00:00 - 2024-08-24 00:00 X-span

Lmax

Y-span Lmax, Leq: dBA: 41.19 - 95, Lcustom: dBA: 9007199254740991 - -9007199254740991

92.9 dBA Max 70.8 dBA 2024-08-16 2024-08-16 Date 21:30:00 19:00:00 Time

Project SOP
Project maintainer -

Time frame 2024-09-20 00:00 - 2024-09-27 17:00 (Australia/Sydney)

Measuring point N1 #14624

Description
Sensor type S50
Sensor serial no. 14624
Master(s) serial no. 108060

Standard (01) Lmax + Leq 20-95 dBA Fast

2024-08-14

Unit dBA

Latest calibration

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 90.6 dBA, Leq: 71.1 dBA, Lcustom: null

Lcustom

X-span 2024-09-20 00:00 - 2024-09-27 17:00

Y-span Lmax, Leq: dBA: 38.34 - 93.04, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 90.6 dBA
 71.1 dBA

 Date
 2024-09-23
 2024-09-27

Time 14:46:00 08:08:00

Project NST
Project maintainer -

Time frame 2024-07-26 00:00 - 2024-08-03 00:00 (Australia/Sydney)

Measuring point NST_1

Description NST S50 #14084

Sensor type S50
Sensor serial no. 10888
Master(s) serial no. 108061
Latest calibration 2024-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 96.5 dBA, Leq: 75 dBA, Lcustom: null

X-span 2024-07-26 00:00 - 2024-08-03 00:00

Y-span Lmax, Leq: dBA: 40.14 - 99.12, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Date
 2024-07-30
 2024-07-30

 Time
 08:10:00
 08:10:00

Project NST
Project maintainer -

Time frame 2024-08-16 00:00 - 2024-08-24 00:00 (Australia/Sydney)

Measuring point NST_1

Description NST S50 #14084

Sensor type S50
Sensor serial no. 10888
Master(s) serial no. 108061
Latest calibration 2024-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 93.5 dBA, Leq: 73.3 dBA, Lcustom: null

X-span 2024-08-16 00:00 - 2024-08-24 00:00

Y-span Lmax, Leq: dBA: 36.66 - 96.09, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqMax93.5 dBA73.3 dBADate2024-08-162024-08-21Time18:12:0011:28:00

8-21

Project NST
Project maintainer -

Time frame 2024-09-20 00:00 - 2024-09-27 17:00 (Australia/Sydney)

Measuring point NST_1

Description NST S50 #14084

Sensor type S50
Sensor serial no. 10884
Master(s) serial no. 108061
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes
Table threshold High

Max Lmax: 92 dBA, Leq: 63.8 dBA, Lcustom: null

Lcustom

X-span 2024-09-20 00:00 - 2024-09-27 17:00

Y-span Lmax, Leq: dBA: 40.39 - 94.17, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 92 dBA
 63.8 dBA

 Date
 2024-09-23
 2024-09-26

Time 20:45:00 07:15:00

Project NST
Project maintainer -

Time frame 2024-10-18 00:00 - 2024-10-26 00:00 (Australia/Sydney)

Measuring point NST_1

Description NST S50 #14084

Sensor type S50
Sensor serial no. 14084
Master(s) serial no. 108061
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 94.3 dBA, Leq: 76.5 dBA, Lcustom: null

Lcustom

X-span 2024-10-18 00:00 - 2024-10-26 00:00

Y-span Lmax, Leq: dBA: 33.14 - 97.14, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 94.3 dBA
 76.5 dBA

 Date
 2024-10-19
 2024-10-23

Time 10:00:00 18:28:00 -

Project NST
Project maintainer -

Time frame 2024-11-08 00:00 - 2024-11-16 00:00 (Australia/Sydney)

Measuring point NST_1

Description NST S50 #14084

Sensor type S50
Sensor serial no. 14084
Master(s) serial no. 108061
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 93.4 dBA, Leq: 74.1 dBA, Lcustom: null

Lcustom

X-span 2024-11-08 00:00 - 2024-11-16 00:00

Y-span Lmax, Leq: dBA: 35.15 - 96.06, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 93.4 dBA
 74.1 dBA

 Date
 2024-11-13
 2024-11-08

Time 14:40:00 10:44:00 -

Project BWD
Project maintainer -

Time frame 2024-10-11 00:00 - 2024-10-19 00:00 (Australia/Sydney)

Measuring point BWD_1

Description 16 Burton St Noise

Sensor type S50
Sensor serial no. 14085
Master(s) serial no. 108062
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 93.3 dBA, Leq: 76.1 dBA, Lcustom: null

Lcustom

X-span 2024-10-11 00:00 - 2024-10-19 00:00

Max

Date

Y-span Lmax, Leq: dBA: 46.91 - 95.43, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 93.3 dBA
 76.1 dBA

 2024-10-16
 2024-10-14

Time 06:54:00 15:04:00 -

Project BWD
Project maintainer -

Time frame 2024-11-15 00:00 - 2024-11-22 00:00 (Australia/Sydney)

Measuring point BWD_1

Description

Sensor type S50
Sensor serial no. 14085
Master(s) serial no. 108062
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 96.4 dBA, Leq: 78.8 dBA, Lcustom: null

X-span 2024-11-15 00:00 - 2024-11-22 00:00

Y-span Lmax, Leq: dBA: 46.88 - 98.67, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 96.4 dBA
 78.8 dBA

 Date
 2024-11-20
 2024-11-20

 Time
 07:42:00
 07:42:00

Project TBY
Project maintainer -

Time frame 2024-09-20 00:00 - 2024-09-27 17:00 (Australia/Sydney)

Measuring point N7 TBY

Description
Sensor type S50
Sensor serial no. 14625

Master(s) serial no. 108059

Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 86.7 dBA, Leq: 70.8 dBA, Lcustom: null

Lcustom

X-span 2024-09-20 00:00 - 2024-09-27 17:00

Y-span Lmax, Leq: dBA: 40.88 - 88.83, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 86.7 dBA
 70.8 dBA

 Date
 2024-09-26
 2024-09-26

 Time
 07:56:00
 19:44:00

Project BWD
Project maintainer -

Time frame 2024-07-26 00:00 - 2024-08-03 00:00 (Australia/Sydney)

Measuring point BWD_1

Description

Sensor type S50
Sensor serial no. 11135
Master(s) serial no. 108062
Latest calibration 2024-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 87.4 dBA, Leq: 73.7 dBA, Lcustom: null

X-span 2024-07-26 00:00 - 2024-08-03 00:00

Max

Y-span Lmax, Leq: dBA: 48.82 - 89.15, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqLcustom87.4 dBA73.7 dBA

 Date
 2024-08-02
 2024-08-02

 Time
 06:40:00
 06:40:00

Project BWD
Project maintainer -

Time frame 2024-08-02 00:00 - 2024-08-10 00:00 (Australia/Sydney)

Measuring point BWD_1

Description
Sensor type \$50

 Sensor type
 \$50

 Sensor serial no.
 11135

 Master(s) serial no.
 108062

 Latest calibration
 2024-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 87.6 dBA, Leq: 73.7 dBA, Lcustom: null

X-span 2024-08-02 00:00 - 2024-08-10 00:00

Y-span Lmax, Leq: dBA: 49.24 - 89.35, Lcustom: dBA: 9007199254740991 - -9007199254740991

Lmax Leq Lcustom

Max87.6 dBA73.7 dBADate2024-08-022024-08-02Time21:36:0006:40:00

Project FDK
Project maintainer -

Time frame 2024-08-16 00:00 - 2024-08-24 00:00 (Australia/Sydney)

Measuring point FDK_1

Description

Sensor type S50
Sensor serial no. 9956
Master(s) serial no. 107964
Latest calibration 2024-06-26

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 87.7 dBA, Leq: 74.7 dBA, Lcustom: null

Lcustom

X-span 2024-08-16 00:00 - 2024-08-24 00:00

Y-span Lmax, Leq: dBA: 47.61 - 89.54, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 87.7 dBA
 74.7 dBA

 Date
 2024-08-21
 2024-08-16

Time 10:42:00 19:00:00 -

Project FDK
Project maintainer -

Time frame 2024-08-16 00:00 - 2024-08-24 00:00 (Australia/Sydney)

Measuring point FDK_4

Description

Sensor type S50
Sensor serial no. 9463
Master(s) serial no. 107963
Latest calibration 2022-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes
Table threshold High

Max Lmax: 97.3 dBA, Leq: 69.8 dBA, Lcustom: null

X-span 2024-08-16 00:00 - 2024-08-24 00:00

Max

Y-span Lmax, Leq: dBA: 55.42 - 99.19, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqLcustom97.3 dBA69.8 dBA

 Date
 2024-08-20
 2024-08-22

 Time
 20:15:00
 08:45:00

Project FDK
Project maintainer -

Time frame 2024-09-20 00:00 - 2024-09-27 17:00 (Australia/Sydney)

Measuring point FDK_1

Description

Sensor type S50
Sensor serial no. 14176
Master(s) serial no. 107964
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 97.7 dBA, Leq: 86.7 dBA, Lcustom: null

X-span 2024-09-20 00:00 - 2024-09-27 17:00

Y-span Lmax, Leq: dBA: 46.59 - 100.07, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqMax97.7 dBA86.7 dBADate2024-09-252024-09-25Time13:20:0009:26:00

Project FDK Project maintainer

Time frame 2024-09-20 00:00 - 2024-09-27 17:00 (Australia/Sydney)

FDK_4 Measuring point

Description

S50

Sensor type Sensor serial no. 14157 Master(s) serial no. 107963 Latest calibration 2024-08-19

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes Table threshold High

Max Lmax: 98.8 dBA, Leq: 81.5 dBA, Lcustom: null

Lcustom

2024-09-20 00:00 - 2024-09-27 17:00 X-span

Y-span Lmax, Leq: dBA: 57.77 - 100.72, Lcustom: dBA: 9007199254740991 - -9007199254740991

Lmax Leq 98.8 dBA Max 81.5 dBA Date 2024-09-26 2024-09-20 Time

09:32:00 22:22:00

Project FDK
Project maintainer -

Time frame 2024-10-18 00:00 - 2024-10-26 00:00 (Australia/Sydney)

Measuring point FDK_1

Description

Sensor type S50
Sensor serial no. 14176
Master(s) serial no. 107964
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 88.3 dBA, Leq: 71.6 dBA, Lcustom: null

Lcustom

X-span 2024-10-18 00:00 - 2024-10-26 00:00

Y-span Lmax, Leq: dBA: 46.3 - 90.21, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 88.3 dBA
 71.6 dBA

 Date
 2024-10-25
 2024-10-22

Time 09:06:00 22:26:00 -

Project FDK
Project maintainer -

Time frame 2024-10-18 00:00 - 2024-10-26 00:00 (Australia/Sydney)

Measuring point FDK_4

Description St Albans Church noise

Sensor type S50
Sensor serial no. 14157
Master(s) serial no. 107963
Latest calibration 2024-08-19

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 98.4 dBA, Leq: 83 dBA, Lcustom: null

X-span 2024-10-18 00:00 - 2024-10-26 00:00

Max

Y-span Lmax, Leq: dBA: 58.33 - 100.27, Lcustom: dBA: 9007199254740991 - -9007199254740991

Lmax Leq Lcustom 98.4 dBA 83 dBA

 Date
 2024-10-22
 2024-10-25

 Time
 23:44:00
 12:20:00

Project FDK
Project maintainer -

Time frame 2024-11-01 00:00 - 2024-11-09 00:00 (Australia/Sydney)

Measuring point FDK_1

Description

Sensor type S50
Sensor serial no. 14176
Master(s) serial no. 107964
Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 89.3 dBA, Leq: 80.9 dBA, Lcustom: null

Lcustom

X-span 2024-11-01 00:00 - 2024-11-09 00:00

Y-span Lmax, Leq: dBA: 44.78 - 91.34, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 89.3 dBA
 80.9 dBA

 Date
 2024-11-06
 2024-11-05

Time 10:48:00 12:18:00 -

Project FDK
Project maintainer -

Time frame 2024-11-01 00:00 - 2024-11-09 00:00 (Australia/Sydney)

Measuring point FDK_4

Description

Sensor type S50
Sensor serial no. 14157
Master(s) serial no. 107963
Latest calibration 2024-08-19

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 97.9 dBA, Leq: 80.4 dBA, Lcustom: null

Lcustom

X-span 2024-11-01 00:00 - 2024-11-09 00:00

Max

Y-span Lmax, Leq: dBA: 55.41 - 99.88, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeq97.9 dBA80.4 dBA

 Date
 2024-11-02
 2024-11-05

 Time
 13:28:00
 17:54:00

Project FDK
Project maintainer -

Time frame 2024-07-26 00:00 - 2024-08-03 00:00 (Australia/Sydney)

Measuring point FDK_1

Description

Sensor type S50
Sensor serial no. 9956
Master(s) serial no. 107964
Latest calibration 2024-06-26

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 95.7 dBA, Leq: 74.3 dBA, Lcustom: null

Lcustom

X-span 2024-07-26 00:00 - 2024-08-03 00:00

Y-span Lmax, Leq: dBA: 47.53 - 97.96, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 95.7 dBA
 74.3 dBA

 Date
 2024-08-01
 2024-08-01

 Time
 14:06:00
 11:04:00

Project FDK
Project maintainer -

Time frame 2024-07-26 00:00 - 2024-08-03 00:00 (Australia/Sydney)

Measuring point FDK_4

Description

Sensor type S50
Sensor serial no. 9463
Master(s) serial no. 107963
Latest calibration 2022-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes
Table threshold High

Max Lmax: 96.9 dBA, Leq: 74 dBA, Lcustom: null

X-span 2024-07-26 00:00 - 2024-08-03 00:00

17:00:00

Time

Y-span Lmax, Leq: dBA: 57.62 - 98.52, Lcustom: dBA: 9007199254740991 - -9007199254740991

 Lmax
 Leq

 Max
 96.9 dBA
 74 dBA

 Date
 2024-07-27
 2024-07-31

Project TBY
Project maintainer -

Time frame 2024-07-12 00:00 - 2024-07-20 00:00 (Australia/Sydney)

Measuring point N7

Description Rear of

Sensor type S50
Sensor serial no. 14625
Master(s) serial no. 108059
Latest calibration 2023-07-25

Standard (02) Lmax + Leq 30-105 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes
Table threshold High

Max Lmax: 91.4 dBA, Leq: 63.3 dBA, Lcustom: null

X-span 2024-07-12 00:00 - 2024-07-20 00:00

Y-span Lmax, Leq: dBA: 37.89 - 93.65, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqLcustom91.4 dBA63.3 dBA

Max91.4 dBA63.3 dBADate2024-07-142024-07-13Time16:45:0015:15:00

Project TBY
Project maintainer -

Time frame 2024-07-12 00:00 - 2024-07-20 00:00 (Australia/Sydney)

Measuring point N7 TBY

Description Rear of

Sensor type S50
Sensor serial no. 14625
Master(s) serial no. 108059
Latest calibration 2023-07-25

Standard (02) Lmax + Leq 30-105 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 15 minutes
Table threshold High

Max Lmax: 91.4 dBA, Leq: 63.3 dBA, Lcustom: null

X-span 2024-07-12 00:00 - 2024-07-20 00:00

Max

Y-span Lmax, Leq: dBA: 37.89 - 93.65, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqLcustom91.4 dBA63.3 dBA

 Date
 2024-07-14
 2024-07-13

 Time
 16:45:00
 15:15:00

Project TBY
Project maintainer -

Time frame 2024-08-02 00:00 - 2024-08-10 00:00 (Australia/Sydney)

Measuring point N7 TBY

Description Rear of

Sensor type S50
Sensor serial no. 10835
Master(s) serial no. 108059
Latest calibration 2024-06-20

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 84.9 dBA, Leq: 64.7 dBA, Lcustom: null

X-span 2024-08-02 00:00 - 2024-08-10 00:00

Y-span Lmax, Leq: dBA: 38.35 - 87.07, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqMax84.9 dBA64.7 dBADate2024-08-032024-08-03Time15:30:0015:30:00

15:30:00 -

Project TBY Project maintainer

Time frame 2024-09-20 00:00 - 2024-09-27 17:00 (Australia/Sydney)

N7 TBY Measuring point

Description Rear of

Sensor type S50 Sensor serial no. 14625 Master(s) serial no. 108059 Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes Table threshold High

Max Lmax: 86.7 dBA, Leq: 70.8 dBA, Lcustom: null

Leq

Lcustom

2024-09-20 00:00 - 2024-09-27 17:00 X-span

Lmax

Y-span Lmax, Leq: dBA: 40.88 - 88.83, Lcustom: dBA: 9007199254740991 - -9007199254740991

86.7 dBA Max 70.8 dBA Date 2024-09-26 2024-09-26

07:56:00 19:44:00 Time

Project TBY
Project maintainer -

Time frame 2024-10-18 00:00 - 2024-10-26 00:00 (Australia/Sydney)

Measuring point N7 TBY
Description Rear of

Sensor type \$50 Sensor serial no. 14625 Master(s) serial no. 108059 Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit dBA

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes
Table threshold High

Max Lmax: 91.4 dBA, Leq: 71.7 dBA, Lcustom: null

X-span 2024-10-18 00:00 - 2024-10-26 00:00

Max

Y-span Lmax, Leq: dBA: 39.15 - 93.73, Lcustom: dBA: 9007199254740991 - -9007199254740991

LmaxLeqLcustom91.4 dBA71.7 dBA

 Date
 2024-10-25
 2024-10-25

 Time
 09:10:00
 08:12:00

Project TBY Project maintainer

Time frame 2024-11-15 00:00 - 2024-11-22 00:00 (Australia/Sydney)

N7 TBY Measuring point

Description Rear of

Sensor type S50 Sensor serial no. 14625 Master(s) serial no. 108059 Latest calibration 2024-08-07

Standard (01) Lmax + Leq 20-95 dBA Fast

Unit

Quantity Sound Pres.Level, Eqv.Sound Pres.L, Leq accumulation

Interval time 2 minutes Table threshold High

Max Lmax: 93.9 dBA, Leq: 82.5 dBA, Lcustom: null

Lcustom

X-span 2024-11-15 00:00 - 2024-11-22 00:00

Lmax

Y-span Lmax, Leq: dBA: 39.24 - 96.38, Lcustom: dBA: 9007199254740991 - -9007199254740991

Leq 93.9 dBA Max 82.5 dBA Date 2024-11-15 2024-11-20 13:52:00 16:28:00 Time

APPENDIX A	v (iv) — C	ALIBRATI	ON RE	CORDS

CERTIFICATE OF CALIBRATION

CERTIFICATE No: C39361

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer: Svantek

Type No: SV 31 Serial No: 31892

Class: 1

Owner: Ferrovial York Joint Venture

Newington, NSW 2127

Tests Performed: Measured Output Pressure level, Frequency & Distortion

Comments: See Details and Class Tolerance overleaf.

CONDITION OF TEST:

 Ambient Pressure
 996
 hPa ±1 hPa
 Date of Receipt :
 03/04/2024

 Temperature
 24
 °C ±1° C
 Date of Calibration :
 08/04/2024

 Relative Humidity
 49
 ½5%
 Date of Issue :
 08/04/2024

Acu-Vib Test AVP02 (Calibrators)

Procedure: Test Method: AS IEC 60942 - 2017

CHECKED BY:

AUTHORISED SIGNATURE:

Hein Soc

Accredited for compliance with ISO/IEC 17025 - Calibration

Results of the tests, calibration and/or measurements included in this document are traceable to SI units through reference equipment that has been calibrated by the Australian National Measurement Institute or other NATA accredited laboratories demonstrating traceability.

This report applies only to the item identified in the report and may not be reproduced in part.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

ACOUSTICS AND VIBRATIONS

Head Office & Calibration Laboratory Unit 14, 22 Hudson Avenue, Castle Hill NSW 2154 (02) 9680 8133

> Page 1 of 2 Calibration Certificate AVCERT02.1 Rev 2.0 14 04 2021

WORLD RECOGNISED
ACCREDITATION
Accredited Laboratory
No. 9262
Acoustic and Vibration

CERTIFICATE OF CALIBRATION

CERTIFICATE NO: SLM39359

EQUIPMENT TESTED: Sound Level Meter

Manufacturer: Svantek

 Type No:
 SVAN 971
 Serial No:
 34933

 Mic. Type:
 ACO 7052E
 Serial No:
 56008

 Pre-Amp. Type:
 SV18
 Serial No:
 33351

Owner: Ferrovial York Joint Venture

Newington, NSW 2127

Tests Performed: IEC 61672-3:2013

Comments: All Tests passed for Class 1. (See overleaf for details)

CONDITIONS OF TEST:

 Ambient Pressure
 997
 hPa ± 1 hPa
 Date of Receipt :
 03/04/2024

 Temperature
 25 °C ±1° C
 Date of Calibration :
 08/04/2024

 Relative Humidity
 50 % ±5%
 Date of Issue :
 08/04/2024

Acu-Vib Test Procedure: AVP10 (SLM) based on IEC 61672-3

CHECKED BY: Authorised Signature:

Accredited for compliance with ISO/IEC 17025 - Calibration
Results of the tests, calibration and/or measurements included in this document are traceable to SI units through reference equipment that has been calibrated by the Australian National Measurement Institute or other NATA accredited laboratories demonstrating traceability.

This report applies only to the item identified in the report and may not be reproduced in part.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

ACOUSTICS AND VIBRATIONS

Head Office & Calibration Laboratory Unit 14, 22 Hudson Avenue, Castle Hill NSW 2154 (02) 9680 8133 www.acu-vib.com.au

> Page 1 of 2 Calibration Certificate AVCERT10.1 Rev.2.0 14/04/2021

Hein Soc

WORLD RECOGNISED
ACCREDITATION
Accredited Laboratory
No. 9262
Acoustic and Vibration
Measurements

CERTIFICATE OF CALIBRATION

CERTIFICATE No: C39654

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer: Pulsar

Type No: 106

Serial No: 70390

Class: 2

Owner: Ferrovial York Joint Venture

Newington NSW 2127

Tests Performed: Measured Output Pressure level, Frequency & Distortion

Comments: See Details and Class Tolerance overleaf.

CONDITION OF TEST:

Ambient Pressure

1014 hPa ±1 hPa 25 °C ±1° C

Date of Receipt: 03/05/2024 Date of Calibration: 07/05/2024

Temperature Relative Humidity

53 % ±5%

Date of Issue: 08/05/2024

Acu-Vib Test AVP02 (Calibrators)

Procedure: Test Method: AS IEC 60942 - 2017

CHECKED BY:

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration
Results of the tests, calibration and/or measurements included in this document are traceable to SI units through reference equipment that has been calibrated by the Australian National Measurement Institute or other NATA accredited laboratories demonstrating traceability.

This report applies only to the item identified in the report and may not be reproduced in part.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

ACOUSTICS AND VIBRATIONS

Head Office & Calibration Laboratory Unit 14,22 Hudson Avenue, Castle Hill NSW 2154 (02) 9680 8133

www.acu-vib.com.au

Page 1 of 2 Calibration Certificate AVCERT02.1 Rev.2.0 14.04.2021

The Calibrator described in this report has been tested to the requirements of the standard IEC 60942-[Ed 4]:2017-11.

The tests described in Annex B of the standard (Periodic tests) were carried out under the environmental conditions listed above to the following clauses:

Clause	Test description
B4.6	Sound Pressure Level
	(By comparison with a reference calibrator).
B4.7	Frequency
	(By measurement with a calibrated frequency meter).
B4.8	Total distortion and noise.
	(By measurement with a calibrated Noise and Distortion meter).

Notes:

- The calibrator was calibrated with the main axis vertical and facing down.
- 2. No corrections have been made for atmospheric pressure,

Parameter	Pre- Adj	Adj Y/N	Output: (dB re 20 µPa)	Frequency (Hz)	THD&N (%)
Level:	94.48	Y	94.01 dB	1000.30 Hz	0.89 %
Uncertainty		±0.11 dB	±0.05%	±0.20 %	
Uncertainty (at		k=2			-0.20 //

Parameter	Class 1		Class 2		
Nominal Frequency	250 Hz	1 kHz	250 Hz	1 kHz	
Output dB SPL	0.25 dB	0.25 dB	0.40 dB	0.40 dB	
Frequency Hz	0.7 % (1.75 Hz)	0.7 % (7 Hz)	1.7 % (4.25 Hz)	1.7 % (17 Hz)	
THD&N	2.5 %	2.5 %	3.0 %	3.0 %	

Tolerance limits from AS/IEC60942 (edition 4)

Results of the tests, calibration and/or measurements included in this document are traceable to SI units through reference equipment that has been calibrated by the Australian National Measurement Institute or other NATA accredited laboratories demonstrating traceability.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

----0000O0000----

Page 2 of 2 AVCERT02 Rev 2 0 14 04 2021 End of Calibration Certificate

CERTIFICATE OF CALIBRATION

CERTIFICATE NO: SLM39651

EQUIPMENT TESTED: Sound Level Meter

Manufacturer: Rion

Type No: NL-42 Serial No: 00145400
Mic. Type: UC-52 Serial No: 149905
Pre-Amp. Type: NH-24 Serial No: 35296

Owner: Ferrovial York Joint Venture

Newington NSW 2127

Tests Performed: IEC 61672-3:2013

Comments: All Tests passed for Class 2. (See overleaf for details)

CONDITIONS OF TEST:

 Ambient Pressure
 1015
 hPa ± 1 hPa
 Date of Receipt:
 03/05/2024

 Temperature
 25
 °C ±1° C
 Date of Calibration:
 07/05/2024

 Relative Humidity
 53
 % ±5%
 Date of Issue:
 08/05/2024

CHECKED BY:

Acu-Vib Test Procedure: AVP10 (SLM) based on IEC 61972-

AUTHORISED SIGNATURE:

Bruce Meldrum

Accredited for compliance with ISO/IEC 17025 - Calibration

Results of the tests, calibration and/or measurements included in this document are traceable to SI units through reference equipment that has been calibrated by the Australian National Measurement Institute or other NATA accredited laboratories demonstrating traceability.

This report applies only to the item identified in the report and may not be reproduced in part.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Head Office & Calibration Laboratory Unit 14, 22 Hudson Avenue, Castle Hill NSW 2154 (02) 9680 8133 www.acu-vib.com.au

> Page 1 of 2 Calibration Certificate AVCERT10.12 Rev.2.0 14/04/2021

WORLD RECOGNISED
ACCREDITATION
Accredited Laboratory
No. 9262
Acoustic and Vibration
Measurements

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self-Generated Noise	11.1	Observed
Electrical Noise	11.2	Observed
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Not Applicable
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:-2013, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:-2013 because evidence was not publically available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 2 specifications in IEC 61672-1:-2013 and because the periodic tests of IEC 61672-3:-2013 cover only a limited subset of the specifications in IEC 61672-1:-2013.

A full technical report is available on request.

Page 2 of 2 End of Calibration Certificate AVCERT10.12 Rev.2.0 14/04/2021

APPENDIX B - VIBRATION MONITORING REGISTER

				Vibration Mo	onitoring Reg	gister													
Date	Time		Conducted by	/ Attended/ Unattended	Type/Model number	Serial No.	Calibration due	Duration of monitoring	Source location	Measurement location	Distance to source (m)	Works being undertaken	PPV Preferred Criteria (mm/s)	PPV (mm/s)	Frequency (Hz)	VDV Preferred Criteria (m/s1.75)	Vibration Dose Value (VDV m/s1.75)	Below criteria (Y/N)	Comments
01-31/07/2024	12am-12pm	Burwood South		Unattended	V12	33770	25/07/2024	31 days	BWD North shaft		5	BWD South shaft excavation	7.5	5.95	N/A	N/A	N/A	Υ	No exceedance recorded
01-31/07/2024	12am-12pm	Five Dock		Unattended	V12	106845	26/07/2025	31 days	FDK East		1	Tunneling work, excavation and spoil	7.5	205	16.5	N/A	N/A	No	On 17/07/2024 at 11:00:00, the data exceedance limits (Vert(z) 205mm/s- Hz 16.5) is
01-31/07/2024	12am-12pm	Five Dock		Unattended	V12	33730	25/07/2025	31 days	FDK East		3	TBM Maintenance & Spoil loadout	7.5	1.3	256	N/A	N/A	Υ	No exceedance recorded.
01-31/07/2024	12am-12pm	N Strathfield		Unattended	V12	33720	25/07/2025	31 days	N Strathfield Site		5	Rocking hammering 250T crane	7.5	0.45	23	N/A	N/A	Υ	No exceedence recorded.
01-31/07/2024	12am-12pm	SOP		Unattended	C22	106848	26/04/2025	31 days	SOP site		5	Concrete pours. spoil loadout works	7.5	18.1	228	N/A	N/A	No	On 18/07/2024 at 15:56:00, the data exceedance limits (Long(x) 18.1mm/s- Hz 228) is attributed to the replacement of the battery by the Environmental representative. Photo
01-31/08/2024	12am-12pm	Burwood South		Unattended	V12	33770	25/07/2024	31 days	BWD North shaft		5	BWD South shaft excavation	7.5	1.65	114	N/A	N/A	Υ	No exceedance recorded.
01-31/08/2024	12am-12pm	Five Dock		Unattended	V12	106845	26/07/2025	31 days	FDK East		1	Tunneling work, excavation and spoil	7.5	126	1.5	N/A	N/A	No	On 30/08/2024 at 10:18:00, the data exceedance limits (Trans(T) 126mm/s- Hz 1.5) is attributed to the replacement of the battery by the Environmental representative.
01-31/08/2024	12am-12pm	Five Dock		Unattended	V12	33730	25/07/2025	31 days	FDK East		3	TBM Maintenance & Spoil loadout	7.5	0.5	256	N/A	N/A	Υ	No exceedance recorded
01-31/08/2024	12am-12pm	N Strathfield		Unattended	V12	33720	25/07/2025	31 days	N Strathfield Site		5	Rocking hammering 250T crane	7.5	1.35	114	N/A	N/A	Υ	No exceedence recorded
01-31/08/2024	12am-12pm	SOP		Unattended	C22	106848	26/04/2025	31 days	SOP site		5	Concrete pours. spoil loadout works	7.5	1.65	32.5	N/A	N/A	Υ	No exceedence recorded
01-30/09/2024	12am-12pm	Burwood South		Unattended	V12	33770	25/07/2024	30 days	BWD North shaft		5	BWD South shaft excavation	7.5	0.9	32.5	N/A	N/A	Υ	No exceedance recorded
01-30/09/2024	12am-12pm	Five Dock		Unattended	V12	106845	26/07/2025	30 days	FDK East		1	Tunneling work, excavation and spoil	7.5	281	50	N/A	N/A	No	On 16/09/2024 at 16:26:00, the data exceedance limits (Vert(V) 281mm/s- Hz 50) is attributed to the replacement of the battery by the Environmental representative.
01-30/09/2024	12am-12pm	Five Dock		Unattended	V12	33730	25/07/2025	30 days	FDK East		3	TBM Maintenance & Spoil loadout	7.5	0.35	5.5	N/A	N/A	Υ	No exceedence recorded
01-30/09/2024	12am-12pm	N Strathfield		Unattended	V12	33720	25/07/2025	30 days	N Strathfield Site		5	Rocking hammering 250T crane excavation	7.5	0.4	128	N/A	N/A	Υ	No exceedence recorded
01-31/10/2024	12am-12pm	SOP		Unattended	C22	106848	26/04/2025	30 days	SOP site		5	Concrete pours. spoil loadout works	7.5	1.45	31	N/A	N/A	Υ	No exceedence recorded
01-31/10/2024	12am-12pm	Burwood South		Unattended	V12	33770	25/07/2024	31 days	BWD North shaft		5	BWD South shaft excavation	7.5	1.35	N/A	N/A	N/A	Υ	No exceedance recorded
01-31/10/2024	12am-12pm	Five Dock		Unattended	V12	106845	26/07/2025	31 days	FDK East		1	Tunneling work, excavation and spoil	7.5	117	2	N/A	N/A	No	On 22/10/2024 at 09:24:00, the data exceedance limits (Trans(y) 117mm/s- Hz 28) is attributed to the replacement of the battery by the Environmental representative.
01-31/10/2024	12am-12pm	Five Dock		Unattended	V12	33730	25/07/2025	31 days	FDK East		3	TBM Maintenance & Spoil loadout	7.5	1.35	256	N/A	N/A	Υ	No exceedence recorded
01-31/10/2024	12am-12pm	N Strathfield		Unattended	V12	33720	25/07/2025	31 days	N Strathfield Site		5	Rocking hammering 250T crane	7.5	0.45	97.5	N/A	N/A	Υ	No exceedence recorded
01-31/10/2024	12am-12pm	SOP		Unattended	C22	106848	26/04/2025	31 days	SOP site		5	Concrete pours. spoil loadout works	7.5	28.6	120	N/A	N/A	No	On 02/10/2024 at 16:12:00, the data exceedance limits (Trans(y) 28.6mm/s- Hz 120) is attributed to the replacement of the battery by the Environmental representative.
01-30/11/2024	12am-12pm	Burwood South		Unattended	V12	33770	25/07/2024	30 days	BWD North shaft		5	BWD South shaft excavation	7.5	4.15	N/A	N/A	N/A	Υ	No exceedance recorded
01-30/11/2024	12am-12pm	Five Dock		Unattended	V12	106845	26/07/2025	30 days	FDK East		1	Tunneling work, excavation and spoil	7.5	224	26.5	N/A	N/A	No	On 14/11/2024 at 01:18:00, the data exceedance limits (Long(X) 224mm/s- Hz 26.5) is attributed to the replacement of the battery by the Environmental representative.
01-30/11/2024	12am-12pm	Five Dock		Unattended	V12	33730	25/07/2025	30 days	FDK East		3	TBM Maintenance & Spoil loadout	7.5	2.25	34	N/A	N/A	Υ	No exceedence recorded
01-30/11/2024	12am-12pm	N Strathfield		Unattended	V12	33720	25/07/2025	30 days	N Strathfield Site		5	Rocking hammering 250T crane	7.5	0.7	114	N/A	N/A	Υ	No exceedence recorded.
01-30/11/2024	12am-12pm	SOP		Unattended	C22	106848	26/04/2025	30 days	SOP site		5	Concrete pours. spoil loadout works	7.5	2.65	120	N/A	N/A	У	No exceedence recorded.
01-31/12/2024	12am-12pm	Burwood South		Unattended	V12	33770	25/07/2024	30 days	BWD North shaft		5	BWD South shaft excavation	7.5	2.55	N/A	N/A	N/A	Υ	No exceedance recorded
01-31/12/2024	12am-12pm	Five Dock		Unattended	V12	106845	26/07/2025	30 days	FDK East		1	Tunneling work, excavation and spoil loadout	7.5	120	3	N/A	N/A	No	On 03/12/2024 at 14:54:00, the data exceedance limits (Trans(T) 120mm/s- Hz 3) is attributed to the replacement of the battery by the Environmental representative.
01-31/12/2024	12am-12pm	Five Dock		Unattended	V12	33730	25/07/2025	30 days	FDK East		3	TBM Maintenance & Spoil loadout	7.5	0.65	228	N/A	N/A	Υ	No exceedence recorded.
01-31/12/2024	12am-12pm	N Strathfield		Unattended	V12	33720	25/07/2025	30 days	N Strathfield Site		5	Rocking hammering 250T crane excavation	7.5	1.2	205	N/A	N/A	Υ	No exceedence recorded.
01-31/12/2024	12am-12pm	SOP		Unattended	C22	106848	26/04/2025	30 days	SOP site		5	Concrete pours. spoil loadout works	7.5	11	51.2	N/A	N/A	У	No exceedence recorded.

mGround borne Noise & Vibration Monitoring Report

Project: Sydney Metro West – Central Tunnelling Package	Report No. 20240805-GBN-01
Start : 15:00pm, 05 August 2024	End: 17:05pm, 07 August 2024
Data collected by:	Attended/Unattended monitoring: Unattended

Was this monitoring event conducted in response to a complaint? Yes

Location and description of construction activity (including operation and load conditions of plant)

XP44 Excavation. Brokk 500 (5TN) used for excavation, hammering and bolting.

XP 44 cutting on 05/08/2024.

XP 44 cutting on 06/08/2024.

XP 44 was directly under the monitoring location.

Monitoring location

Monitored inside the apartment on the first level of the building, with the monitor installed in the living room area on the ground floor of a dwelling. The living room is located at the back of the house, directly above Cross Passage 44.

Reason for location selection:

Location was selected in consultation with the resident. It was located less than 1.5 meters from a window and a wall. This was decided due to space constrains and in consultation with the resident not to affect their day to day life.

Distance between monitoring location and source (m)

Various, refer to summary tables

Map/diagram of monitoring location/sensitive receiver and construction activity

XP44 Excavation at depth of approximately 43 meters, located directly beneath the monitor.

Instrumentation details

Type of monitor	One unit with noise (microphone) and vibration (tri-axial geophone) logging functions													
Make and Model	Svan958AG	Last calibration date	31/07/2024											
Serial Number	59185	Calibration valid until	31/07/2025											

Instrumentation set-up and method

Microphone placed on stand inside living room.

Geophone secured to weighted plate placed on wooden floor.

Refer to Attachment C for photo of set up.

Results and analysis

The monitoring occurred during day, evening, and night shifts, however, only results from the night period have been assessed in this report due to lower domestic and ambient noise and vibration sources allowing a more accurate comparison between prediction and actual levels.

Noise Results summary

Date	Night shift of 05/08/24										
Time	1:30AM – 2:30AM	03:30AM -06:00AM									
Activity	Brokk Cutting	Bolting									
Prediction LAeq _{15min} dBA	39	39									
Trigger for Alt. Accomm. LAeq _{15min} dBA	45	45									
LAeq15min dBA	44.4	41.3									
LA10 dBA	45.8	45.6									
LA90 dBA	28.7	31.4									
LAmax dBA	71	56.9									
Commentary (including	Vibration peaks did not align with the detected noise levels. Given that the monitor is positioned next to a window, the elevated readings could be associated with either road activities or events	The detected values may be associated with construction activities, and while they were higher than predicted, they remained below the trigger for Alternative Accommodation.									
estimated contribution of construction activities vs non-construction sources)	within the residence. While the values recorded were higher than predicted, they remained below trigger for Alternative Accommodation offering.	Values recorded after 5 AM have been disregarded because after this time noise levels consistently increase, which could likely be attributable to road activities.									

Date	Night shift of 06/08/24													
Time	12:00AM – 01:00AM	01:30AM -04:00AM	04:15AM – 06:00AM											
Activity	Brokk Cutting	Brokk Cutting	Brokk Cutting											
Prediction LAeq _{15min}	39	39	39											
dBA	33	33	33											
Trigger for Alt.	45	45	45											
Accomm. LAeq _{15min} dBA	43	43	43											
LAeq15min dBA	40	41.9	42.1											
LA10 dBA	44.6	45.5	46.6											
LA90 dBA	29.7	28	32.3											
LAmax dBA	54.9	64.8	55.3											
Commentary (including estimated contribution of construction activities vs non-construction sources)	Monitoring event considered representative of impact from Brokk cutting. As noise level is <2dB(A) above the prediction, the significance of residual noise level is negligible (NSW Noise policy for Industry - 2017).	Monitoring event potentially representative of impact from Brokk cutting. However, since the vibration peaks do not align with the noise peak, no definitive conclusion can be drawn from this data.	The detected values may be associated with construction activities, and while they were higher than predicted, they remained below the trigger for Alternative Accommodation. Values recorded after 5 AM have been disregarded because after this time noise levels consistently increase, which could likely be attributable to road activities.											

As previously mentioned, the monitoring location was chosen in consultation with the resident, positioned less than 1.5 meters from a window and a wall due to space constraints and to minimize disruption to the resident's day-to-day life. For this reason, no definitive conclusions can be drawn from the monitoring results. Due to the lack of recorded noise data (for privacy reasons), it is challenging to determine whether the detected noise levels are attributable to construction activities.

Data was collected for only two nights, as the resident requested the removal of the monitor from the property.

Given the resident's ongoing complaints and because the Lamax values slightly exceeded the Sleep Disturbance value (54 dB) for Noise Catchment Area 11, Alternative Accommodation has been offered to the resident for the duration of the remaining XP excavation activities.

Refer to Attachment A for graphs from the monitoring period.

Noise Conclusion:

Were results from tunnelling higher than predicted?	Yes	If yes, discuss what action has been taken	Potentially related to activities inside the property or noise generated from road activities.
Were results from XP escavation higher than trigger for alternative accommodation?	No	If yes, was alternative accommodation offered?	N/A
Was the monitoring and results compliant with the NVMP?	Yes	If no, discuss what action has been taken	N/A

Summary of vibration results:

Date	Night of 05/08/2024	Night of 06/08/24
Time	11pm-7am	11pm-7am
Activity	XP Cutting	XP Cutting
Approximate horizontal distance between TBM and monitor	XP44 depth was 43m below 1/84 Concord Ln, and the monitor located above the XP44	XP44 depth was 43m below 1/84 Concord Ln, and the monitor located above the XP44
Prediction m/s ^{1.75}	0.13	0.13
VML m/s1.75	0.26	0.26
Night (8 hr) VDV m/s ^{1.75}	0.011	0.034
Screening level mm/s	7.5	7.5
Predicted PPV mm/s	0.2	0.2
PPV mm/s	0.412	3.311
Commentary (Including estimated contribution of construction activities vs non-construction sources)	The PPV level is slightly higher than the predicted level, but it is well below the screening level. VDV below prediction and VML	The PPV level recorded was higher than the predicted level. Based on the shift reports, at the time of the detected high levels, clean-up activities were going on inside the tunnel (1AM-1:45AM), so most likely this vibration peaks are not construction related. It is important to note that the resident lodged a complaint at around the time the peak vibration was detected. The increased vibration could be partly due to the resident potentially walking around the living room at that moment. VDV below prediction and VML

Refer to Attachment B for examples of graphs from the monitoring period.

Vibration Conclusion:

Were results from tunnelling higher than predicted?	Yes	If yes, discuss what action has been taken	Potentially related to activities inside the property. Three residents live in the unit. No excavation activities were occurring at the time of the peaks. A complaint was received around 1 AM, so it is likely that the affected resident was in the living room at that time, which could have impacted the vibration monitor.
Were results from XP excavation higher than screening level and/or VML?	No concluding results	If yes, discuss what action has been taken	N/A
Was the monitoring and results compliant with the NVMP?	Yes	If no, discuss what action has been taken	N/A

Attachment B: Vibration Graphs

VDV vibration graph/s:

Attachment C Monitoring set up

Left: view of set up facing towards front of house,

right: view of set up facing back of house

Attachment D Night Shift Reports

AFJV XP Shift Rep	port	Cut/Benchin	ng Legend (C)	Cut/E	Bench	ing L	egen	d (C)	Bolti	ng Le	gend	(B)		Shot	crete	Lege	end (S	i)			Othe	rs		1 [١	dork!	force				
			p/Remove Brokk	CBB		ing Brok	ik		_	•	move be						otcrete F	Rig		lant Mai			cing	7 E	Firs	t Na	ne	S	urnai	me		Com	pany	Cr	e¥
Date: 07-Aug-2	DA .	C Cuttin	ng	СМВ	Muck	Bound			ВМ	eshing a	nd Bolti	ng		S Sh	otcretin				TP P	re-starti	Toolbo	x		ΙL								AF	JV	ΧP	
VI-Aug-2	24	CU Muck	ing/Clean Up	CBE	Bench	ing Exca	vator		BY Bo	olt Surve	y			SY Sh	otcrete :	urvey			WA W	/alk Out				ΙL								AF	JV	XP	
Day: Wednesd	lav	GE Geoli	nspection/Mapping	csu	Sump	Excavati	on		BE Ek	etrical l	Breakdo	Wh		SC C	ıring				PB A	ll other	plant me	ch. bre	akdown	ΙE								AF	JV	XP	
Wednesd	iay	CY Surve	y	CUM	Sump	Mucking			BM M	echanica	l Breake	lown		SB EI	ectrical E	reakdo	wn		PO A	ll other	plant ele	ect. brea	akdown	ΙE								AF	JV	XP	
Shift:		CV Ventil	lation (scrubber/bags)											SM M	echanica	Break	down		AC A	ccess/E	gress			ΙГ								AF	JV	XP	
Night Sh	ift	CE Electr	rical Breakdown											so w	aiting on	Shoter	ete		LA L	abour R	esourcin	ng .		1 [\top	AF	JV	XP	
		CM Mech	anical Breakdown											SP D	pth pins	set up			E E	xcavatio	n Setup	(Weep	holes.	1 [Kelk	:0		ΧP	
		C0 Waiti	ng on Dump Truck																ES S	pear Bo	lts, Scru	ibber N	loves)	ΙГ							\top				
				•															PW P	ower Su	pply			1											
																								- -							\top			1	
																								_ h							+			T	
																								_ F							+			+	
																								_ h							+			+	
																								_ h							+			+	
																								- 1							+			+	
																														—					
Drive Informatio	Progress	Summary		400				\neg	200											^^								_						_	
Drive informatio	n:			←180	00	-1	900		←20 0	00	↓	2100		←220	00	Ţ.	2300		←24	00	<u> </u>	-0100	,	←02	.00	•	-030	U	← 0	400		←05	00	10	otal
	Ch Start Shift	0.0	Excavation	П		Т	\Box	П	Т	П	Т	П	\Box	\Box	ТТ	Т		Т	П		\Box			П	Т	П	\Box		П	\top	\Box	П	\top	0.	.00
VD42	Ch End Shift	0.0	Bolt					П		П					П	Т										П				. —	\Box		Т	0.	.00
XP42	Heading Area	22.0	Shotcrete					\Box		П					\top	Т		T						П		П				\Box	\Box	П		0.	.00
	Shift Progress	0BCM	Others					\Box		П					\top	Т		T						П		П				\Box	\Box	П		0.	.00
																																		0.	.00
	Ch Start Shift	10.8	Excavation								\neg				П	Т		Т						П							т		\top		.00
VD45	Ch End Shift	10.8	Bolt	Е	в	вв	ВВ	вв	В	\top	\top	\vdash	\top	\top	\top	\top		\top	\vdash		\top	\top		T		\top	\top		\top	-	\top		\top	2	.00
XP45	Heading Area	19.2	Shotcrete						SI	SP	SP SP	SP S	SP SP	SP S	P SP	P SP	SP S	P SP	SP S	P SP	SP S	P SP	SP SI	SP :	SP SP	SP			1	\pm	+		+		.75
	Shift Progress		Others	TP	$\pm \pm$	\top	+	+	T																		ES ES	ES E	S ES	ES E	ES ES	ES F	S ES ES		.25
	3		Legista																																.00
	Ch Start Shift	9.2	Excavation	T	С	c cu	CU												0 1	СС	0 0	0	СС		0	0	мсм	сміс	v c	c	о с	С	clolo		50
	Ch End Shift	9,6	Bolt	+				вв	BM B	В	вв	В	вв	ВЕ	В	вв	ВЕ	вв						+	Ť					T			+++		50
XP44	Heading Area	19.2	Shotcrete	+	+	+	-		-		-					+	H-1	+-	\vdash	+	+	+	+	+	+	+	+	\vdash	+	+	+	\vdash	++		.00
	Shift Progress	8BCM	Others	TP T		+	+	+	_	+	+	\vdash	+	+	++	+		+	\vdash	+	+	+		40		+	+	\vdash	+	+	+	\vdash	++		00
	omit i logiess	UDCM	Uthers								_																			_	لطع			-	.00
	Ch Start Shift	5.5		7	T	7							7		7	С	Total	o lo	l c l	сС	o lo	e le l	СС	C	СС	С	СС	С	0	0 0	СС	0 (c c c		.00
	Ch Start Shift	6.1	Excavation	++	B0 5		DO -	ВВ								В	-	5 6	-	0 0	0 0	, 0	6 6		0 0	-	0	6 (, 0	4	- 0		7 6 6		.50
XP43		19.2	Bolt	++	D2 E	99 BS	DS E	ь	D B	15	PB	6	БВ	0 6	15	4	++	+	\vdash	+	+	+		+	+	\vdash	+	\vdash	+	+	+	\vdash	++		
J	Heading Area		Shotcrete		-	+	+	+	+	+	+	\vdash	+	+	++	+	\perp	+	\vdash	+	+	+	\vdash	+	+	\vdash	+	\vdash	+	+	44	\vdash	+		.00
	Shift Progress	12BCM	Others	TP T							┸					┸														_	╙	4			.50
																																		12	.00

AFJV XP Shift Report		Cut/Benching	g Legend (C)	Cut/	Bench	ing Le	egen	d (C)	Bolti	ng Le	gend	(B)		Sho	otcre	te Le	gene	d (S)			Ot	ners									₩orl	cforc	e			
, , , , , , , , , , , , , , , , , , ,		CS Set Up	/Remove Brokk	CBB	Bench	ng Brok	k		BS Sc	t Up/Re	move b	olter		SS	Set up/	Remove	Shoto	rete Rig	PIV	Plant	Mainter	ance/S	rvicing	\neg		First	t Naı	me		Surn	ame	T	Co	npany	\blacksquare	Crew
Date: 06-Aug-24		C Cutting	9	СМВ	Muck	Bound			вм	eshing a	nd Bolt	ing			Shotere				TP	Pre-si	art/Too	lbox												AFJV	XF	P.
00-Aug-24		CU Muckin	ng/Clean Up	CBE	Bench	ing Exca	vator		BY B	olt Surve	y			SY	Shotere	te Surv	ey		WA	Walk	Dut													AFJV	XF	P
Day: Tuesday		GE Geolm	spection/Mapping	CSU	Sump	Excavati	on		BE Electrical Breakdown						Curing				PB	All ot	her plan	t mech.	breakd	own										AFJV	XF	P
Tuesday		CY Survey		CUM	Sump		BM M		SB	Electric	al Break	down		PO	All ot	her plan	t elect.	breakde	own										AFJV	XF	P					
Shift:		CV Ventila	tion (scrubber/bags)											SM	Mechan	ical Bro	akdow	/n	AC	Acces	s/Egre	s											-	AFJV	XF	:P
Night Shift		CE Electri	cal Breakdown											so	Waiting	on Sho	tcrete		LA	Labou	r Resor	ırcing											-	AFJV	XE	:P
		CM Mecha	nical Breakdown											SP	Depth p	ins set	up		Ec	Excav	ation S	tup (W	eephol	:s,										Kelko	XF	P
		CO Waitin	g on Dump Truck																E3	Spear	Bolts,	Scrubb	r Mov	:s)											Т	
																			PW	Powe	Supply														\neg	
																																			\top	
																																\top			\top	
																													T			\top			\top	
																									\vdash							\top			\pm	
																																\top			\pm	
																									\vdash										\pm	
																																			_	
Drive Information:	Progress	Summary		←18	00	←1	900		←20	00	←	2100		←2 2	200		←23	00	←;	2400		←0 1	00		⊢020	00	•	-030	00	←	0400		← 0	500		Total
	Ch Start Shift	0.0	Excavation		$\overline{}$	+	$\overline{}$	$\overline{}$		Т	_	Т	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$	-	+	Т	$\overline{}$		$\overline{}$	πŧ	$\overline{}$	Т	_	$\overline{}$	ТТ	+	Т	$\overline{}$			十	0.00
	Ch End Shift	0.0	Bolt		+	+	_			+	+	+	_	+	_	+	+	+	+	+		\vdash		+		+	\dashv	+	+	+	+		\vdash	-	+	0.00
XP42	Heading Area	22.0	Shotcrete	\vdash	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	\vdash	+	+	+	+	\dashv	+	+	+	\vdash	+	Н	$\overline{}$	+	0.00
	Shift Progress	0BCM	Others		+++	+	_	+		+	+	+	+	+	_	+	_		+	+	+	H	_	+	+	+	+	+	+	+	+	+	\vdash	-	+	0.00
	Silit Trogress	00014	Others								4								4											4						
	Ch Start Shift	10.8	F		culo	:и све	cedes	odnos	cedce	el cul	culce	doeda	odce.	dood	ned or	ıl eu			_							cod	cedo	edre	doeda	odeo	dooda	odco.	doed	cu cu	CUI	0.00 8.00
	Ch End Shift	10.8	Excavation		COL	UCBB	CDDCC	DOLDE	CDQC	9 00	CUICE	quoqu	,DQCD	qued	LDG CI	5 00		вв	вв	В				В	вв		CDGC	DOLD	quequ	,00C0	quequ	,DQCD	quad	00 00	-	3.50
XP45	Heading Area	19.2	Bolt	\vdash	++	+	+	+	\vdash	+	+	+	+	+	+	+	اره	0 0	18	10	ыв	-	ыв	10	о в		+	+	+	+	+	+	\vdash	-	+	0.00
	Shift Progress	0BCM	Shotcrete	тр т	+	+	_	+	\vdash	++	+	+	+	+	+	+	+	++	+	+	+	\vdash	+	+	+	+	\vdash	+	+	+	\vdash	+	\vdash	\rightarrow	+	0.50
	onirt Progress	UBCIM	Others	IP I			_							Щ	4	Щ			_		_				_	Ш	_					_	Ш		_	
	Ch Charl Chir	7.5	I		-				-												-	-			-			-				-				12.00
	Ch Start Shift	7.5	Excavation	\vdash	CMIC	IVI CM	CIMI C	IVI CIVI	CMI CI	ALCM!	C	С	c c	С	C C	C	0 1	c c	c c	С	СС	CU	cu cu	/ C	c c	С	C	c c	С	C CN	С	CC	C	C C	4	11.50
XP44	Ch End Shift	8.6	Bolt	\vdash	++	+	+	+	\vdash	+	+	\vdash	+	\vdash	+	+	+	++	+	\vdash	+	\vdash	\perp	\vdash	+	+	\vdash	+	\vdash	+	\vdash	+	\vdash	\rightarrow	+	0.00
/ · · · · ·	Heading Area	19.2	Shotcrete		\bot	+	+	\perp	\vdash	+	+	\vdash	+	\vdash	+	+	\perp	+	+	\vdash	\perp	\vdash	\perp	\sqcup	+	\sqcup	\dashv	+	\vdash	+	\vdash	+	\vdash	\rightarrow	+	0.00
	Shift Progress	21BCM	Others	TP T	P																														ㅗ	0.50
																																				12.00
	Ch Start Shift	4.1	Excavation		0 0	СС	0 0	0	cu c	u c	c c	С	c c	С	C CI	J CU	0 1	c c	c c	С	c c	CU	ou c	С	c c	С	С	c c	С	cu cı	1 0	c c	С	c cu	CU	11.75
XP43	Ch End Shift	4.9	Bolt	\sqcup		Ш				\perp				\perp		$\perp \perp$			丄		\perp	Ш		\sqcup	\perp					┸		\perp	Ш		_	0.00
AP43	Heading Area	19.2	Shotcrete																																\perp	0.00
	Shift Progress	15BCM	Others	TP		\perp				\Box	\perp			\prod		\Box			\perp							\prod			\prod	\perp						0.25
																																				12.00

Page 1

Ground borne Noise & Vibration Monitoring Report

Project: Sydney Metro West – Central Tunnelling Package	Report No. 20240701-GBN								
Start: 13:00pm, 01/07/2024	End: 16:25 pm,04/07/2024								
Data collected by:	Attended/Unattended monitoring: Unattended								
Was this monitoring event conducted in response to a complaint?	Yes								
Location and description of construction activity (including operation and load conditions of plant) TBM 3 & 4 Cutting TBM3 was at	Monitoring location North Strathfield Monitored inside the bedroom on the ground floor and it is approx. 57 m off alignment of TBM3. Reason for location selection:								
TBM4 was at North Strathfield on 02/07/2024. North Strathfield is approx. 57 off TBM alignment.	The location was selected in consultation with the resident.								
Distance between monitoring location and source (m)	Various, refer to summary tables								

Map/diagram of monitoring location/sensitive receiver and construction activity

TBM3 & TBM4 locations (blue arrow) on evening of 1st July 2024 (beginning of monitoring period).

Instrumentation details Type of monitor One unit with noise (microphone) and vibration (tri-axial geophone) logging functions Make and Model Svan958AG Last calibration date 14/09/2022 Serial Number 59503 Calibration valid until

Instrumentation set-up and method

Microphone placed on stand inside the bedroom.

Geophone secured to weighted plate placed on a carpeted floor. .

Refer to Attachment C for photo of set up.

Template: SMWSTCTP-AFJ-1NL-NV-TMP-000001

Results and analysis

The monitoring occurred during day, evening, and night shifts, however, only results from the night period have been assessed in this report due to lower domestic and ambient noise and vibration sources allowing a more accurate comparison between prediction and actual levels.

Noise Results summary

Date	Night of 01/07/2024	Night of 02/07/2024
Time	11:15-11:30pm	14:01-14:16am
Activity	TBM 3 cutting ~ 50m TBM 4 cutting ~ 50m	TBM 3 cutting ~ 54m TBM 4 cutting ~ 39m
Approximate horizontal distance between TBM and monitor (m)	TBM depth was 17m below 31 Nelson Road, North Strathfield located was offset from the TBM alignment by 57m off TBM alignment	TBM depth was 17m below 31 Nelson Road, North Strathfield located was offset from the TBM alignment by 57m off TBM alignment
Prediction LAeq _{15min} dBA	40	34
Trigger for Alt. Accomm. LAeq _{15min} dBA	45	45
LAeq _{15min} dBA	30.3	29.7
LAmax dBA	37.3	32.2
Commentary (including estimated contribution of construction activities vs non-construction sources)	Time chosen was indicative of TBM cutting for approx. 4hrs and minimal ambient noise. Level is below prediction, and trigger for AA	Time chosen was indicative of TBM cutting for approx. 4hrs and minimal ambient noise. Level is below prediction, and trigger for AA

Refer to Attachment A for examples of graphs from the monitoring period.

The recorded levels during TBM operation were below the noise prediction.

Noise Conclusion:

Were results from tunnelling	No	If yes, discuss what action has been	N/A
higher than predicted?		taken	
Were results from tunnelling	No	If yes, was alternative	N/A
higher than trigger for		accommodation offered?	
alternative accommodation?			
Was the monitoring and	Yes	If no, discuss what action has been	N/A
results compliant with the		taken	
NVMP?			

Summary of vibration results:

Date	Night of 01/07/2024	Night of 02/07/2024
Time	11pm-7am	11pm-7am
Activity	TBM 3 cutting ~ 50m TBM 4 cutting ~ 50m	TBM 3 cutting ~ 54m TBM 4 cutting ~ 39m
Approximate horizontal distance between TBM and monitor	TBM depth was 17m below 31 Nelson Road, North Strathfield located was offset from the TBM alignment by 57m off TBM alignment	TBM depth was 17m below 31 Nelson Road, North Strathfield located was offset from the TBM alignment by 57m off TBM alignment
VDV Prediction m/s ^{1.75}	0.15	0.15
VML m/s ^{1.75}	0.26	0.26
Night (8 hr) VDV m/s ^{1.75}	0.0005	0.023
Screening level mm/s	7.5	7.5
Predicted PPV mm/s	0.3	0.3
PPV mm/s (during TBM)	0.058	0.495
Commentary (Including estimated contribution of construction activities vs non-construction sources)	VDV below prediction and VML. PPV below screening level Graph in Attachment B shows evidence of TBM operation intermittently through the period.	VDV below prediction and VML.PPV is above predicted value, but well below the screening level for unreinforced structures. Graph in Attachment B shows evidence of TBM operation intermittently through the period.

Refer to Attachment B for examples of graphs from the monitoring period.

Vibration Conclusion:

Were results from tunnelling higher than predicted?	No	If yes, discuss what action has been taken	N/A
Were results from tunnelling higher than screening level and/or VML?	No	If yes, discuss what action has been taken	N/A
Was the monitoring and results compliant with the NVMP?	Yes	If no, discuss what action has been taken	N/A

Attachment A: Example Noise Graphs sn.59503-958-59503-20240629_23_00_40_L63 (5) : Logger results, logger step = 1 m, pixels per sample = 6 \Rightarrow 📦 🏿 🚾 🗺 | -5.0 dB 🔞 90.0 dB 💀 📆 🐼 🚮 📦 🗳 • <u>m</u> 74.1 0.35 68.0 61.8 0.30 0.25 55.8 g 49.7 5 0.15 43.6 2 37.5 0.10 0.05 31.4 0.00 25.3 09:30:00 PM 01/07/2024 10:00:00 PM 01/07/2024 11:30:00 PM 01/07/2024 12:30:00 AM 02/07/2024 01:30:00 AM 02/07/2024 10:30:00 PM 11:00:00 PM 12:00:00 AM 01:00:00 AM 01/07/2024 02/07/2024 . 01/07/2024 02/07/2024 02/07/2024 **★** VDV (SR) [m/s^1.75] ★ Peak (TH) [m/s] ★ VDV (SR) [m/s^1.75] ★ VDV (SR) [m Ch4, P1 (A, Fast) Ch4, P1 (A, Fast) Main cursor 01/07/2024 11:29:39 PM 37.3 30.3 49.6 Inside blocks 01/07/2024 11:14:39 PM 00:15:00.000 29.1 Overload (Ch1) 30/06/2024 02:28:10 AM 00:01:30.000

Attachment B: Example Vibration Graphs

VDV vibration graph/s:

Attachment C Monitoring set up

AFJV XP Shift Report		Cut/Benchin	g Legend (C)	Cutl	Bencl	hing	Lege	nd ((-			nd (E		:	Shote	rete l	_ege	nd (S))			Othe	rs								١	dorkf	orce				
port			o/Remove Brokk	CBB		hing B						ve bolte						otcrete R	lig				ce/Serv	icing	7	F	irst M	lame	•	S	urna	me		Соп	pany		Crew
Date: 04-Jul-24		C Cuttin	9	смв	Muck	k Boun	d		В	Meshin	g and l	Bolting			S Sho	tcreting				TP Pr	e-starti	Toolb.	ox											A	FJV	×	(P
04-3u1-24		CU Mucki	ng/Clean Up	CBE	Benc	hing E	xcavator		BY	Bolt St	irvey				SY Sho	tcrete S	urvey			WA W	alk Out				1									A	FJV	×	(P
Day: Thursday		GE Geo In	spection/Mapping	csu	Sump	Exca	vation		BE	Electric	al Bre	kdown			SC Cur	ing				PB AI	lother	plant m	ech. br	eakdow	١.									Α	FJV	×	(P
Thursday		CY Survey	,	CUM	Sump	Muck	king		вм	Mechai	nical Br	eakdov	VD.		SB Ele	ctrical B	eakdor	Wh		PO AI	lother	plant el	lect. bro	akdowi	· I									Α	FJV	×	(P
Shift:	1	CV Ventila	ation (scrubber/bags)												SM Me	chanical	Breakd	own		AC A	cess/E	gress			1									Α	FJV	×	(P
Night Shift		CE Electri	ical Breakdown	1											SO Wa	iting on :	Shotere	te		LA La	bour R	esourci	ing		1	l							AF.	IV		×	(P
		CM Mecha	nical Breakdown	1										- 1	SP Dep	oth pins:	et up			Fy	cavatio	n Setu	p (Wee	pholes	1	l I							AF			X	(P
	•	CO Waitin	g on Dump Truck	1										_						ES Sp	ear Bo	lts, Scr	ubber l	Moves)	1	li I								A	FJV	×	(P
			•	-																PW Po	ower Su	pply			1								Ť			Ť	
																			'						_				\neg				\top			\neg	
																													\dashv				+			\dashv	
																										\vdash			\dashv				+			\dashv	
																										\vdash			\dashv				+			+	
																										\vdash			\dashv				+			+	
																										\vdash			\rightarrow				+			+	
																										_											
	Progress	Summary																																Г			
Drive Information:				←18	300	+	-1900)	←2	000		←21	.00	١.	←220	0	(-2	2300		←240	00	+	-010	0	←	0200		((300		←0	400		←0 5	00		Total
	Ch Start Shift	8.7	Excavation	0 (СС	С	СС	0 0	:U CU	0 0	0	С	c cu	CU	СС	0 0	0	C CL	u cu	0 0	0	С	0 0	CU (:U C	С	0 0	; c	С	cu ci	JO	0 0	0	С	c cu	CU	12.00
VD40	Ch End Shift	9.9	Bolt		\Box	Т	\Box		П		Т			П			Т					Т			Т	П		Т	П		П			П			0.00
XP42	Heading Area	19.2	Shotcrete	\top	$\neg \neg$	十	$\neg \neg$										1				\top				T	П		1	П		П			П			0.00
	Shift Progress	23BCM	Others	\top		十	\top	\neg	\top	\neg	\top	\vdash					\top					\neg	\top	\vdash	\top	\Box	\top	\top	П	\top	П	\neg		\Box		\top	0.00
	_																																				12.00
	Ch Start Shift	0.3	Excavation	T		CUNC	UMCUM	cuMci	JNCUM	cumes	ulesu	csulc	sulcsu	iesule	esulesu	lesules	a esu	icsulcsi	ulcun	симси	MOUN	cunc	unicur	vicsulo	sules	lesule	sulcs	ulest	icsul	csules	ucsu	csucu	IMCUN	CUMC	sulcsu	CSU	11.25
1/200	Ch End Shift	0.7	Bolt	+	\top	T								П								T		Ħ	T												0.00
XP36	Heading Area	21.2	Shotcrete	+	+	+	+	\dashv	+	\top	+	\vdash	+	\vdash	+	+	+	\vdash	+	\vdash	+	\pm	+	+	+	\vdash	\top	1	\vdash	+	+	+	+	\vdash	+	+	0.00
	Shift Progress	0BCM	Others	TP 7	тр тр	+	+	+	+	+	+	\vdash	+	\vdash	+	+	+	\vdash	+	\vdash	+	+	+	+	+	\vdash	+	+	\vdash	+	\vdash	+	+	\vdash	+	+	0.75
	omit. Togless	1 350111	Ouners										4				_						_		_		4	_		4			4				12.00
	Ch Start Shift	2.3	Excavation	7		Ŧ	7	===	T		Ŧ		Ŧ				Ŧ		T		T	= 1	Ŧ	ΠŦ	Ŧ	T		Ŧ					Ŧ		Ŧ	Ŧ	0.00
	Ch End Shift	2.3	Bolt	+	+	+	+	+	+	+	+	\vdash	+	\vdash	+	+	+	\vdash	+	\vdash	+	+	+	+	+	\vdash	+	┰	\vdash	+	\vdash	+	+	\vdash	+	+	0.00
XP40	Heading Area	19.2		+	+	+	+	+	+	_	+	\vdash	+	\vdash	+	\vdash	+		+		+	+	+	+	+	\vdash	_	+	\vdash	_	\vdash	\vdash	+	\vdash	+	+	0.00
		19.2 0BCM	Shotcrete							51.1.51		51.1.5				D		DI 1 DI				51.1		S				1	5	N 1 51		51.1.51					12.00
	Shift Progress	I ORCIVI	Others	PWP	W PW	PW	WIPW	PWP	W PW	P.M. D.	wIPW	PW P	WIPW	PW	PW	PWP	w PW	PW PW	rjev	PW P	PW	PW	W PW	PW	WPV	PW	P۱	PW	PW	PW PV	ηPW	PW P	wipw	PW	WIPW	PW	
				-																																	12.00
	Ch Start Shift	4.7	Excavation	+	С	С	c c	C C	:U CU	0 0	С	CU C	cu c	С	c c	C (0	C CL	n co	C C	; c	С	СС	0 0	cu cu	С	C C	C	С	CU CI	JC	C (0	С	c cu	CU	11.50
XP41	Ch End Shift	5.3	Bolt	\vdash	$\perp \! \! \perp$	_	\perp	\perp	\bot	\perp	\perp	\vdash	\perp	ш	\perp	$\perp \perp$	┸	\sqcup	\perp		\perp	\perp	\perp	\sqcup	\bot	\sqcup	\perp	1	\sqcup	\perp	\sqcup	\perp	\bot	\sqcup	\perp	\perp	0.00
A1 71	Heading Area	19.2	Shotcrete	$\perp \perp$		_	\perp		Ш		\perp	Ш		\Box	\perp		\perp					_			丄	Ш	\perp	\perp	Ш		Ш		\perp	Ш		\perp	0.00
1																																					0.50
	Shift Progress	12BCM	Others	TP 1	TP	\bot	\perp		\perp				\perp	Ш							ш				ш	ш		┸-	ш		Ш			Ш			0.50

AFJV XP Shift Report]	Cut/Benching	J Legend (C)	Cut/l	Bench	ing L	.egen	d (C)	Bolt	ing Le	egend	I (B)		Sho	tcrete	Lege	end (S)			Othe	rs								Wor	rkford	ce				
			/Remove Brokk	CBB	Benchi	-				et Up/R							hotcrete F	Rig			intenanc		icing	7 I	F	irst N	ame		Surn	iame		C	ompa	ny	Cre	· ¥
Date: 05-Jul-24		C Cutting		СМВ	Muck I					1eshing :		ing			hotcretin	-					Toolbo	×		11									AFJV		XP	
03-0u1-24		CU Muckin	g/Clean Up	CBE	Benchi	ng Exc	avator		BY B	olt Surv	cy			SY S	hotcrete	Survey			WA W	alk Out				11									AFJV		ΧP	
Day: Friday		GE Geo Ins	:pection/Mapping	csu	Sump I	xcava	tion		BE E	lectrical	Breakdo	own		SC C	uring				PB AI	lother	plant m	ech. bro	akdowi	n I									AFJV		ΧP	
Filluay		CY Survey		CUM	Sump I	Muckin	g		BM N	1echanic	al Break	down		SB E	lectrical f	Breakdo	own		PO AI	lother	plant el-	ect. bro	akdowr	·									AFJV		XP	
Shift:		CV Ventilal	tion (scrubber/bags)											SM N	1echanica	Break	sdown		AC Ac	cess/E	gress			11									AFJV		XP	
Night Shift		CE Electric	al Breakdown											SO V	/aiting or	Shotc	rete		LA La	bour F	esourcii	ng		11									AFJV		XP	
]	CM Mechan	nical Breakdown											SP D	epth pins	set up	•				on Setup			11									AFJV		ΧP	
		CO Waiting	g on Dump Truck																Sp	ear Bo	lts, Scr	ubber f	Moves)	11									AFJV		XP	
				_															PW Po	wer S	ipply			╛												
																								_												
																															\neg					
																												\top			\neg					
																												\top			\neg					
																												\top			\neg					
																															\neg					
																														_						
Drive Information:	Progress	Summary		←18	00	←:	1900		←20	00	←	2100)	←22	00	←	2300		←240	00	←	-010	0	←0	200		←03	00	←	-040	0	←	0500		To	tal
	Ch Start Shift	10.4	Excavation	П	0 (0	0 (c cu	CU	СС	0 0	C	cu cu	0	СС	0 0	00	u cu	0 0	C	0 0	0 0	cu c	o u	С	СС	С	c cu	CU C	СС	0	0 0	0	cu cu	11.5	50
VD40	Ch End Shift	10.8	Bolt	П		Т	П		П	\Box	\neg	П		П	\Box	┰					П			\top	П		П		П	\top	П	Т	П		0.0)0
XP42	Heading Area	19.2	Shotcrete		\top	Т	П		П	\Box	丁	\top		П	\top	T		\top		1	Т	\top		T	П		П		\Box	\top	П	T	\Box		0.0	00
	Shift Progress	8BCM	Others	TP T	P	\top			\Box	\top	十	\top		\Box	\top	十		\top		\top	\top	\top		\top	\Box	\top			\vdash	\top	\Box	十	\top		0.5	50
																													4						12.	00
	Ch Start Shift	0.9	Excavation		esue:	sulest	Jesuje:	sulcsu	csuc	sulcsu	CUNCU	Mesu	esulesu	csuc	sujesuje	su es	uesueu	INCUI	csucs	ucsu	esu es	sulesu	CUNC	UN CSU	csulc	sulcsu	esue	sulcsu	esu e	sucur	CUNC	UNCU	NCUNC	UNCUN	11.5	
V-000	Ch End Shift	1.2	Bolt			-					-			П		\top											П		-	_	т	_			0.0	00
XP36	Heading Area	21.2	Shotcrete	\vdash	+	\top	+	\top	\vdash	\top	\top	\top	\top	\vdash	+	\top	+	\top		+	\vdash	\top	\vdash	\top	\vdash	\top	t	+	\vdash	+	\vdash	\top	1 1	\neg	0.0	
	Shift Progress	0BCM	Others	TP T		\top	+	\top	\vdash	+	\top	+	\top	\vdash	+	\top	+	\top		+	\vdash	\top	\vdash	\top	\vdash	\top	\vdash	+	\vdash	+	+	\top	+	\neg	0.5	
			Teansie .																											البينية					12.	00
	Ch Start Shift	2.3	Excavation			Т	T	T			T					Т		T		T						T				\top		T			0.0	
	Ch End Shift	2.3	Bolt		++	+	+	+	\vdash	+	+	+	+		+	+	+	+		+	+	+	\vdash	+	\vdash	\top	+	+	\leftarrow	+	+	+	+	+	0.0	
XP40	Heading Area	19.2	Shotcrete	\vdash	++	+	++	+	\vdash	+	+	+	+	\vdash	+	+	+	+		+	\vdash	+		+	\vdash	-	\vdash	+	\vdash	+	+	+	+	+	0.0	
	Shift Progress	0BCM	Others	тр т	P PW P	w 05w	0.70	w ow	D./ D	w ow	DV/ DV	/ 04/	DW DW	00	v ov	N. 01	D D.	w 0v	DW DV	J 01J	DW D	w pw	DW D	w pw	DW B	ow pw	0	w pw	01/10	o	D	N/ D1	100/10	ow pw	12.0	
	Omit i Togless	02011	Others			-T- "		" F W		Y W		- W	F W	. "		- 1		F W		- T- W		" T	- " "	"T* "		- F W		" " W		تنت			1- "	" F W	12.	_
	Ch Start Shift	5.5	F		0 1	T c	0 (e Le	- C	el cel	CE CE	CE	CE CE	Logla	e cel	DE C	FLOFIO	E CE	CE O	el ce	CE O	e loe	CEL	e ce	CE L	or or	l ce le	e ce	CE -	FICE	CEL	DE C	l cel	CE OF	11.5	
	Ch End Shift	5.5	Excavation Bolt	\vdash	-	7	F '	-			CE CE		00 00	100		7	- OE C	- 00	02 0	100	-	- 100	05 0	-		OL CE			والم	75		-		02 02	0.0	
XP41	Heading Area	19.2		+	++	+	++	+	\vdash	+	+	+	+	+	++	+	++	+	\vdash	+	+	+	\vdash	+	\vdash	+	+	+	+	+	++	+	+	+	0.0	
	_		Shotorete		_	+	++	+	\vdash	+	+	+	+	\vdash	+	+	++	+	\vdash	+	$\vdash \vdash$	+		+	\vdash	+	\vdash	+	\vdash	+	+	+	+	+		
	Shift Progress	0BCM	Others	TPT	1											┸													┷		ᆚ				0.5	
																																			12.0	00

AFJV XP Shift Report		Cut/Benchin	g Legend (C)	Cut/l	Bencl	hing	Lege	nd (C) Bo	lting	Leg	end (l	B)	,	Shoto	crete l	.ege	nd (S)	Т		0	hers			1 [₩o	rkfor	ce				
			p/Remove Brokk	CBB		hing Br						ve bolt			SS Set	up/Rem	ove Sh	otcrete Rig			it Mainte		ervicin	ig] [Fir	st Na	me		Surn	ame		Co	mpa	ny	(Crew
Date: 01-Jul-24		C Cuttin	9	СМВ	Muck	Bound	4		В	Meshi	ng and	Bolting	,		S She	otcreting				TP Pre-	start/To	olbox			I I									AFJV		XP	
01-3u1-24		CU Mucki	ng/Clean Up	CBE	Bend	hing Ex	cavato		BY	Bolt S	urvey				SY She	otcrete Si	irvey			WA Wal	k Out													AFJV		XP	
Day: Monday		GE Geolf	spection/Mapping	csu	Sump	Excav	ation		BE	Electr	ical Bro	akdown	1		SC Cui	ring				PB All	other pla	nt mech	. break	down	П									AFJV		XP	
Monday		CY Survey	,	CUM	Sump	Mucki	ing		вм	Mech	anical E	reakdor	wn		B Ele	ctrical Br	eakdo	wn		PO Alla	other pla	nt elect	break	down	П									AFJV		XP	
Shift:		CV Ventil	ation (scrubber/bags)												M Me	chanical I	Breakd	lown		AC Acc	ess/Egre	ss			Ιľ									AFJV		XP	
Night Shift		CE Electr	ical Breakdown												so Wa	iting on S	hoter	ete		LA Lab	our Reso	urcing			ΙI									AFJV		XP	
		CM Mech	anical Breakdown												SP De	pth pins s	etup			Exc	avation S	etup (\	/eepho	oles.	Ιľ									AFJV		XP	
		CO Waitin	g on Dump Truck											_					П	Spo	ar Bolts,	Scrubb	er Mo	ves)	Ιľ									AFJV		XP	
	•			•																PW Pov	ver Supp	y			Ιľ											\Box	
																									• t												
																									ı							\top				$\overline{}$	
																									ı											t	
																									ı											t	
																									ŀ				T			\top				\vdash	
																									ŀ				1			-				 	
																																				_	
Drive Information:	Progress	Summary		←18	00	+	-1900)	←2	000		←21	100		-220	00	←2	2300		←240	0	← 0	100		← 0:	200		-030	00	+	040	0	-	0500	,	7	Total .
	01.0 01.0.				-																_					- 1 -	-			+	1 -	-	+	1 - 1	_	⊨	10.50
	Ch Start Shift	7.8	Excavation	\vdash	CM	CM C	M CM	CM C	и см	CM 0	MICN	CM	CM CI	ALCIM C	OM CN	1 CM C	VI CIVI	CM CM	CM	_	\vdash	CU	CUIC	:U CU	'C	CC	C	c c	C	CC	; c	С	CC	C	C C	_	10.50
XP42	Ch End Shift	7.9	Bolt	\vdash	\perp	_	+		+	\dashv	_	\vdash	+	+	_	++	╄	\square	-	_	\vdash	\vdash	+	_	₩	+	++	+	+	-	+	\vdash	+	\vdash		_	0.00
/ · · · · ·	Heading Area	25.2	Shotcrete		_		\perp		\perp	\perp	_	\vdash	\perp	+		++	╄	$\vdash \vdash \vdash$	_			Ш	_	_	\vdash		+		\vdash	_	_	\vdash	_	\vdash	\dashv		0.00
	Shift Progress	3BCM	Others	TP T	Р															AC AC	AC A																1.50
																																			هجما		2.00
	Ch Start Shift	0.0	Excavation						\perp			ш	\perp	\perp		$\perp \perp$	┸	$\sqcup \sqcup$	_			Ш			ш		$\perp \perp$		$\perp \perp$		\perp	\sqcup	┸	Ш	\bot		0.00
XP36	Ch End Shift	0.0	Bolt	\sqcup	\perp	\perp	\perp		\perp		\perp	ш	\perp	\perp	\perp	$\perp \perp$	┸	$\sqcup \sqcup$	_		$\sqcup \bot$	\sqcup	\perp	\perp	\sqcup	\perp	$\perp \perp$	\perp	\sqcup	丄	\perp	Ш	丄	\sqcup	\perp		0.00
VI.20	Heading Area	21.2	Shotcrete		$\perp \perp$		\perp		\perp	\Box	\perp	Ш	\perp	$\perp \perp$	\perp		┸	$\sqcup \sqcup$			$\sqcup \!\!\! \perp$	Ш		\perp	Ш	\perp	$\perp \perp$	\perp	\sqcup	\bot	\perp	Ш	丄	Ш			0.00
	Shift Progress	0BCM	Others														L										$\perp \perp$										0.00
																																					0.00
	Ch Start Shift	2.3	Excavation																\Box										\Box								0.00
XP40	Ch End Shift	2.3	Bolt																Ι																		0.00
AP40	Heading Area	19.2	Shotcrete											$\Box \Box$					T								$\Box \Box$										0.00
	Shift Progress	0BCM	Others	ES E	S ES	ES E	S ES	ES E	S ES	ES	ES ES	ES	ES E	S ES I	ES ES	ES E	S ES	ES ES	ES	ES ES	ES E	ES	ES E	ES ES	ES	ES E	ES	ES ES	ES	ES E	S ES	ES E	ES ES	ES	ES ES	Γ	12.00
																																					2.00
	Ch Start Shift	2.3	Excavation		T				Т			ГΤ		TT			T		Т			П	T		П		TT		Т	T	T	ПΤ	Т	ТΠ	$\neg \neg$	\Box	0.00
l vou	Ch End Shift	2.3	Bolt		\top	\top	\top		\top	\vdash		1	\top	\top			1	$\Box\Box$	┪			\Box	\neg		\Box		+	\top	+	\top	\top		\top	+	\dashv		0.00
XP41	Heading Area	19.2	Shotcrete		+	\top	\top	\vdash	\top	\vdash	\top	\vdash	\top	+	\top	+	1	\Box	\dashv	\top		\Box	\top	\top	⇈	\top	+	\top	+	\top	+	\vdash	\top	\vdash	$\dashv \dashv$		0.00
	Shift Progress	0BCM	Others	ES E	S ES	ES E	S ES	ES E	S ES	ES	ES ES	ES	ES E	S ES	ES ES	ES E	S ES	ES ES	ES	ES ES	ES E	ES	ES E	S ES	ES	ES E	ES	ES ES	ES	ES E	S ES	ES E	ES ES	ES	ES ES		12.00
			L CALLETS															10 20																			2.00
																																				_	2.00

AFJV XP Shift Report		Cut/Benchi	ng Legend (C)	Cut/l	Benchir	ng Leg	jend l	(C) B	olting	Leg	end ((B)	:	Shote	crete l	.ege	nd (S)	Т		0	thers	5								Wo	rkfor	ce				
		CS Set I	Up/Remove Brokk	CBB	Benchin	g Brokk			Set U					SS Set	up/Rem	ove Sh	otcrete Rig	. [PM Pla	nt Maint	enance	/Servic	ing	C	Fire	st Na	me		Surn	ame		C	omp	any		Crew
Date: 02-Jul-24		C Cutt	ing	смв	Muck B	ound		В	Mesh	ing and	Bolting	9		S She	otcreting				TP Pro	-start/T	oolbox			ΙŒ									AFJ	/	ΧP	
02-Jul-24		CU Muc	king/Clean Up	CBE	Benchin	g Excavat	or	B1	<mark>Y</mark> Bolt :	Survey				SY She	otcrete S	irvey			WA Wa	ılk Out				lΓ									AFJ	/	XP	
Day: Tuesday		GE Geo	Inspection/Mapping	csu	Sump E	xcavation		BE	Electr	rical Br	eakdow	n		SC Cu	ring				PB All	other pl	ant mec	h. brea	kdown										AFJ	/	ΧP	
Tuesuay		CY Surv	ey	CUM	Sump M	1 ucking		BN	M ech	anical B	Breakdo	wn		SB Ele	ctrical Br	eakdo	Wh		PO All	other pl	ant elec	t. brea	kdown	lΓ									AFJ	/	XP	
Shift:	1	CV Vent	tilation (scrubber/bags)											SM Me	chanical	Breakd	lown		AC Ac	cess/Egr	ess			Ιſ									AFJ	/	XP	
Night Shift		CE Elect	trical Breakdown	1										so Wa	iting on :	Shotere	te		LA Lat	our Res	ourcing	,		Ιſ									AFJ	,	XP	
		CM Med	hanical Breakdown											SP De	pth pins :	etup			Ex-	cavation	Setup (Weeph	oles,	l [AFJ	/	XP	
		C0 Wait	ting on Dump Truck	1														Π'	Sp	ear Bolts	, Scrub	ber M	oves)	ΙГ									AFJ	,	ΧP	
				-															PW Po	wer Supp	oly			Ιħ												
																		-						·												
																								ı				1			\neg					
																								ı				1			\neg				1	
																								ı				1			\dashv				1	
																								_ h				\top			\dashv				+	
																								ŀ				+			\dashv				+	
																														_	_					
Drive Information:	Progress	Summary		←180	00	←190	00	←	2000		←2	100		←22 0	0	←2	2300	١.	←24 0	0	←(0100		←0 2	200		←03 (00	←	-040	0	+	-050	0		Total
	Ch Start Shift	8.0	Excavation	TT	\top	1	П	o	Т	$\overline{}$		Т	ΤŤ	$\overline{}$	ТТ	1		T	$\overline{}$	ТТ	_	П	Т	П	$\overline{}$	亓	Т	П	\pm	$\overline{}$	\Box	$\overline{}$	Т	П	十	0.00
VD 40	Ch End Shift	8.0	Bolt		+		\top	十	\top	\top	\top		$\top \top$	\top	\top	\top		\neg	\top	\top	\top	П		П	\top	\Box	\top	\top	\top	+	П	\top	\top		\top	0.00
XP42	Heading Area	25.2	Shotcrete	+	+		\top	\top	+	1	T	_	+	\top		T	\vdash	\dashv	\top	++	+	\vdash		\vdash	\top	\Box	\top	\top	十	+	\vdash	十	\top		+	0.00
	Shift Progress	0BCM	Others	AC A	C AC AC	AC A	C AC	AC AC	AC.	AC A	C AC	AC A	C AC .	AC AC	AC A	C AC	AC AC	AC	AC AC	AC A	C AC	AC	AC AC	AC	AC AC	AC	AC A	AC	AC A	C AC	AC /	AC A	C AC	AC A	d	12.00
			Others																																	12.00
	Ch Start Shift	0.0	Excavation	$\overline{}$	$\overline{}$			_		\neg						т					$\overline{}$								\neg	┯		_				0.00
	Ch End Shift	0.0	Bolt	+	+	+	+	\top	+		1	\top	+	+	++	+		\dashv	\top	++	+	\vdash	\top	\vdash	+	+	+	+	+	+	\vdash	+	+		1	0.00
XP36	Heading Area	21.2	Shotcrete	+	++	+	+	+	+	+	1	+	+	+	++	+	\vdash	\dashv	+	++	+	\vdash	+	\vdash	+	╁┼	+	\vdash	+	+	\vdash	+	+	\vdash	+	0.00
	Shift Progress	0BCM	Others	ES E	S ES ES	ES E	S ES	ES ES	ES.	ES E	S ES	ES E	S ES	ES ES	ES E	S ES	ES ES	ES	ES ES	ES F	S ES	ES	ES ES	ES	ES ES	ES	ES E	ES.	ES E	S ES	ES	ES E	S ES	ES E	s	12.00
	Canti Togress	020,4	Lottiers			20 2		20 20		-0 -		-0 -		20 20	20 2	0	20 20		20 20		20		20	20	20		20 6	23	201			-01	20	20 0		12.00
	Ch Start Shift	2.3	Excavation			T							T			Ŧ				TT	Ŧ									7			Ŧ		7	0.00
	Ch End Shift	2.3	Excavation Bolt	++	++	+	+	+	+	+	1	+	+	+	++	+	\vdash	\dashv	+	++	+	↤	+	$\vdash \vdash$	+	╁┼	+	+	+	+	\vdash	+	+	\vdash	+	0.00
XP40	Heading Area	19.2	_	++	++	++	+	+	+	+	+	+	+	+	++	+	\vdash	+	+	++	+	\vdash	+	\vdash	+	+	+	+	+	+	+	+	+	\vdash	+	0.00
	Shift Progress	0BCM	Shotcrete	1				10 11	100					10 10			10 10		10 10		0.0				10 10	1	10 1		10 1						_	12.00
	anire Progress	OBCIVI	Others	AC A	C AC AC	AC A	UAU	AU AL	J AC .	AC A	U AU	AU A	U AU	AU AL	AC A	U AU	AU AU	AC	AU AL	AC A	IU AU	AU	AU AU	AC	AU AL	AU	AU A	AU	AC A	- AU	AC I	AC A	U AU	AC A		
	01.01			7							1																									12.00
	Ch Start Shift	2.3	Excavation	+	СС	0 0		cu cu	10	0 0	CU	CO (; c	0 0	0 0	0	C CU	CU	C C	С	СС	С	c cu	CU	C C	С	C 0	CU	00 0	0	С	0 (0	CU C	4	11.50
XP41	Ch End Shift	3.1	Bolt	+	++	+	\perp	+	+	\perp	+	\perp	++	_	++	╀	\vdash	\dashv	+	++	+	\vdash	\perp	\vdash	+	+	\perp	+	+	+	\vdash	+	\bot	\vdash	+	0.00
75. 41	Heading Area	19.2	Shotcrete	₩		\perp	\perp	\perp	+		\bot		++	\perp	$\perp \perp$	┸	\vdash	\perp	\perp	\vdash	\bot	\sqcup	\perp	\sqcup	\perp	\sqcup	_	\perp	_	+	\sqcup	_	\perp	\sqcup	┸	0.00
1	Shift Progress	0BCM	Others	TPIT	/	1	1 1	- 1	1	- 1	1	- 1	1 1	- 1	1 1	1	1	- 1	ı	1 [1	1	- 1	1	ı	1 I	ı	1 1	- 1	- 1	1 I	- 1	- 1	1 I	1	0.50
			Others																			-				_			_	_	_	_				

AFJV XP Shift Report]	Cut/Benchin	g Legend (C)	Cut/l	Bench	ing L	egen						S			egend				Other	s							١.	/orkf	orce			
				CBB		ing Brok	sk		Set l				S			re Shotcre	te Rig			intenance		ing	1 F	Firs	t Nar	ne	S	urnan	ne		Comp	pany	Crew
Date: 03-Jul-24		C Cuttin	9	СМВ	Muck	Bound			B Mes	hing and	Bolting		S	Shote	eting			TP P	re-start	/Toolbo:	x		ΙL							\perp	AF.	JV	XP
03-301-24		CU Mucki	ng/Clean Up	CBE	Bench	ing Exca	vator	E	Y Bolt	Survey			51	<mark>Y</mark> Shotci	ete Sur	vey		WA W	/alk Out				ΙL								AF.	JV	XP
Day: Wednesday		GE GeoIn	spection/Mapping	CSU	Sump	Excavati	ion		E Elect	trical Br	eakdowr		SC	Curing				PB A	ll other	plant me	ch. bre	akdown	ΙГ								AF.	JV	XP
vveunesuay		CY Survey	,	CUM	Sump	Mucking	3	E	M Med	hanical E	Breakdo	WD.	SE	E lectri	cal Brea	akdown		PO A	ll other	plant ele	ct. bres	kdown	ΙГ							T	AF	JV	XP
Shift:		CV Ventile	ation (scrubber/bags)										SP	Mecha	nical Br	reakdown		AC A	ccess/E	gress			ΙГ							\top	AF.	JV	XP
Night Shift		CE Electri	cal Breakdown	1									S	0 Waitin	g on Sh	otcrete		LA La	abour R	esourcin	g		ΙГ							\top	AF.	JV	XP
		CM Mecha	nical Breakdown	l									SI	P Depth	pins se	tup		Es Es	xcavatio	on Setup	(Weep	holes,								AFJV	7		XP
	-	CO Waitin	g on Dump Truck	l														ES S	pear Bo	lts, Scru	bber M	loves)	ΙΓ							\top	AF.	JV	XP
				-														PW P	ower Su	ipply			ΙÞ							\top			
																							' -							+			
																							_							+			
																							_ -							+			
																							_ h							+			
																							_ -							+			
																							⊢							+-			
																															_		
Drive Information:	Progress	Summary		. 10	00				2000					2200		. 220	_	. 24	^^		0100		. 02	^^		020				\Box	. 05		T-1-1
Drive information:				←18	00	-1	900	*	-2000)	←Z.	100	<u> </u>	2200		←230	U	←24	00	1	0100)	←02	00	+	-030	,	←0 4	100	1	←05 (00	Total
	Ch Start Shift	8.0	Excavation	Γ	\top	\Box			П		П		Т		\Box		П	T		П	\Box		П		П			П		\Box	\Box	\Box	0.00
XP42	Ch End Shift	8.0	Bolt	П							П									П			П		П			П		\Box			0.00
AP42	Heading Area	25.2	Shotcrete			П			\Box		П		\neg							П	П		П		П			П		\Box	Т	\Box	0.00
	Shift Progress	0BCM	Others	AC A	C AC A	AC AC	AC A	C AC /	C AC	AC A	C AC	AC AC	AC A	C AC A	C AC	AC AC	AC A	CACA	C AC	AC AC	C AC	AC AC	AC A	C AC	AC A	C AC	AC A	AC .	AC A	C AC	AC A	C AC AC	12.00
																																	12.00
	Ch Start Shift	0.0	Excavation		\top	\Box		т			П		Т	Т				Т					П					П		П	т	\top	0.00
VD00	Ch End Shift	0.0	Bolt		\top	\top		\top	\top		T	\top	\top	\top	\top		\vdash	T	\top	\top	\top	\top	\vdash	\top	\Box	\top		T	\top	\top	\top	\top	0.00
Y D2E	Heading Area	21.2	Shotcrete	T	+	\top		+	\top	\top	1	\top	\neg	+	\top		\vdash	1	\top	\vdash	11	\top	\vdash	\top	\vdash	\top		\Box	\top	+	\pm	+	0.00
	Shift Progress	0BCM	Others	T	+	\top		+	$\dashv \dashv$	\top	1 +	\dashv	\neg	+	\top		\vdash	1	\top	\vdash	+	\top	\vdash	\top	\vdash	\top		\vdash	\top	+	\pm	+	0.00
			1																											فحن			0.00
	Ch Start Shift	2.3	Excavation												T																o		0.00
	Ch End Shift	2.3	Bolt	+	++	+	\vdash	+	+		+	+	+	++	+		+	1	+	+	+	+	+	+	\vdash	+	\vdash	+	+	+	+	+	0.00
YDAN	Heading Area	19.2	Shotcrete	+	++	+	\vdash	++	+	+	1 +	\dashv	+	++	+	\vdash	+	1	+	\vdash	+	+	\vdash	+	\vdash	+	\vdash	┰	+	++	+	++	0.00
	Shift Progress	0BCM	Others		++	+	\vdash	++	+	_	+	+	+	++	+		+	+	+	+	+	+	\vdash	+	\vdash	+	\vdash	+	+	++	+	++	0.00
	Oivi Togress	0001-1	Loruetz	4	4					_			_		_				_			_		_		_			_	_			
	Ch Start Shift	3.9	I= .:		С	c c	c c	c culo	ul c l	c c	cul	cul c l	c c	: I d I	e l e	l c l c	cul c	ulclo	e l e	c c	- C	e lei	CU	СС	c l	СС	cu ci	J C	c c	: l c l	c l c	c cu cu	0.00 11.50
1	Ch End Shift	4.2	Excavation	+	-	0	0 0		~	0 0	-	-0	-		0 0	0 0	2010	401	-		-	0 00		0 0	-	0 0	30 0	1-	0 0	-	4	70000	0.00
XP41		19.2	Bolt	\vdash	++	+	\vdash	++	+	_	+	+	+	++	+	\vdash	\vdash	+	+	\vdash	+	+	\vdash	+	$\vdash \vdash$	+		+	+	++	+	++	0.00
								1 I	- I - I		1	1 1	- 1	1 1		I	1 1	1		1 1	1 1	- 1	1		1 1				- 1		- 1	1 1	0.00
Al TI	Heading Area		Shotcrete			+	-		$\overline{}$		_	\neg		+ +	-		-	-		-	\neg	-			-	-		+	-	+	-	+-	0.51
XI 41	Shift Progress	0BCM	Others	ТР Т	P																									廿	土		0.50 12.00

AFJV Central Tunnel Package

Vibration Monitoring Event Report

Monitoring Information	n				
Test Location		Unsound heritage structure		YES 🗌	NO
Works Monitoring	FDK East	Distance between geophone works (m)	and	1m	
Conducted by		Attended monitoring		YES 🗌	NO⊠
Date/s	01.08.2024 - 31.08.2024				
Instrumentation & Test	Procedure				
Instrument		Sigicom V12			
Calibrator		Sigicom			
Calibration Date	26/07/2023	Calibration Due	26/0	7/2025	
Monitor Serial #	V12 33760				

Preferred Criteria (circle	e criteria relev	ant to monitorin	g event)			
	Reinforced or framed structures	Unreinforced or light framed structures	Heritage structurally sound	Heritage structurally unsound	Residential human comfort Day	Residential human comfort Night
Peak Particle Velocity (PPV mm/s)	25	7.5	7.5	2.5	-	-
Vibration Dose Value (VDV m/s ^{1.75})	-	-	-	-	0.4	0.26

		Monitorii	ng Results			
Start Time	00:00		Duration			31 Days
Trigger value (mm/s)	5mm/s		# of vibration	triggers		0
	Trai	ns (y)	Ver	t (z)	Lor	ng (x)
	Value	Freq (Hz)	Value	Freq (Hz)	Value	Freq (Hz)
Peak Particle Velocity (PPV mm/s)	86.5	2.5	43	9.5	126	1.5
Vibration Dose Value (VDV mm/s1.75)	-	-	-	-	-	-
Below preferred criteria?		YES	NO \(\square\) de explanation	and corrective a	actions taken i	n next section

AFJV Central Tunnel Package

Notes and Diagram/Map, Photos and Graphs

Geophones located inside

building against wall.

On 30/08/2024 at 10:18:00, the data exceedance limits (Trans(T) 126mm/s- Hz 1.5) is attributed to the replacement of the battery by the Environmental representative.

Interval report

Project FDK
Project maintainer -

Time frame 2024-08-01 00:00 - 2024-08-31 00:00 (Australia/Sydney)

Measuring point FDK_2

Description

\/10

Sensor type V12
Sensor serial no. 33760
Master(s) serial no. 107964
Latest calibration 2023-07-26

Standard (18) DIN4150-3 + Freq 250 mm/s 1-315Hz

Unit mm/s
Quantity Velocity
Interval time 2 minutes

Max V: 43 mm/s, L: 126 mm/s, T: 86.5 mm/s

X-span 2024-08-01 00:00 - 2024-08-31 00:00

Y-span V, L, T : mm/s: 0 - 200

Max 43 mm/s
Date 2024-08-30
Time 10:18:00

L 126 mm/s 2024-08-30 10:18:00

86.5 mm/s 2024-08-30 10:18:00

Т

Multi report

Vibration Monitoring Event Report

Monitoring Information	Monitoring Information										
Test Location	Queen St, NST	Unsound heritage structure		YES	NO						
Works Monitoring	NST Site	Distance between geophone works (m)	and	5m							
Conducted by		Attended monitoring		YES	NO						
Date/s	01.09.2024 - 30.09.2024	01.09.2024 - 30.09.2024									
Instrumentation & Test	Procedure										
Instrument		Sigicom V12									
Calibrator	Sigicom										
Calibration Date	25/07/2023	Calibration Due	25/0	7/2025							
Monitor Serial #	V12- 33720										

Preferred Criteria (circle criteria relevant to monitoring event)										
	Reinforced or framed structures	or framed framed structurally structurally human human comfort Day comfort								
Peak Particle Velocity (PPV mm/s)	25	7.5	7.5	2.5	-	-				
Vibration Dose Value (VDV m/s ^{1.75})	-	-	-	-	0.4	0.26				

Monitoring Results										
Start Time	00:00		Duration		30 Days					
Trigger value (mm/s)	5mm/s		# of vibration	triggers	0					
	Tra	ns (y)	Ver	t (z)	Long (x)					
	Value	Freq (Hz)	Value	Freq (Hz)	Value	Freq (Hz)				
Peak Particle Velocity (PPV mm/s)	0.25	N/A	0.4	128	0.4	21.5				
Vibration Dose Value (VDV mm/s1.75)	-	-	-	-	-	-				
Below preferred criteria?	YES NO NO If "NO", provide explanation and corrective actions taken in next section									

Multi report

Project NST Project maintainer

Time

128

Hz

2024-09-01 00:00 - 2024-09-30 00:00 (Australia/Sydney) Time frame

NST_2 #33720, NST V12, V12, Serial number: 33720, Calibrated: 2023-07-25, true

21.5

Interval report

Project NST
Project maintainer -

Time frame 2024-09-01 00:00 - 2024-09-30 00:00 (Australia/Sydney)

Measuring pointNST_2 #33720DescriptionNST V12Sensor typeV12Sensor serial no.33720Master(s) serial no.108061Latest calibration2023-07-25

Standard (18) DIN4150-3 + Freq 250 mm/s 1-315Hz

Unit mm/s
Quantity Velocity
Interval time 2 minutes

Max V: 0.4 mm/s, L: 0.4 mm/s, T: 0.25 mm/s

X-span 2024-09-01 00:00 - 2024-09-30 00:00

Y-span V, L, T : mm/s: 0 - 1

 V
 L
 T

 Max
 0.4 mm/s
 0.4 mm/s
 0.25 mm/s

 Date
 2024-09-25
 2024-09-09
 2024-09-12

 Time
 14:04:00
 05:30:00
 09:26:00

Vibration Monitoring Event Report

Monitoring Information	Monitoring Information										
Test Location		Unsound heritage structure	YES □ NO⊠								
Works Monitoring	SOP Site	Distance between geophone works (m)	and 5m								
Conducted by		Attended monitoring	YES □ NO⊠								
Date/s	01.09.2024 - 30.09.2024										
Instrumentation & Test	Procedure										
Instrument		Sigicom C22									
Calibrator	Sigicom										
Calibration Date	26/04/2023	Calibration Due	26/04/2025								
Monitor Serial #	C22-106848										

Preferred Criteria (circle criteria relevant to monitoring event)										
	Reinforced or light framed structures Unreinforced or light framed structures Heritage structurally sound Heritage structurally unsound Residential human comfort Day com Night									
Peak Particle Velocity (PPV mm/s)	25	7.5	7.5	2.5	-	-				
Vibration Dose Value (VDV m/s ^{1.75})	-	-	-	-	0.4	0.26				

Monitoring Results										
Start Time	00:00		Duration		30 Days					
Trigger value (mm/s)	5mm/s		# of vibration	triggers	0					
	Trai	ns (y)	Ver	t (z)	Long (x)					
	Value	Freq (Hz)	Value	Freq (Hz)	Value	Freq (Hz)				
Peak Particle Velocity (PPV mm/s)	0.7	341	1.45	31	0.4	341				
Vibration Dose Value (VDV mm/s1.75)	-	-	-	-	-	-				
Below preferred criteria?	YES NO NO If "NO", provide explanation and corrective actions taken in next section									

Multi report

Interval report

Project SOP

Project maintainer

Time frame 2024-09-01 00:00 - 2024-09-30 00:00 (Australia/Sydney)

Chart data is aggregated by 4 minutes.

Measuring point

Description

Sensor type C22 Sensor serial no. 106848 Master(s) serial no. 106848 Latest calibration 2023-04-26 Aggregate

SOP

Standard (18A) DIN4150-3 Anlage 250mm/s 1-315Hz

Unit mm/s Quantity Velocity Interval time 2 minutes Frequency weighting OFF Aggregated time 4 minutes

V: 1.45 mm/s, L: 0.4 mm/s, T: 0.7 mm/s Max

2024-09-01 00:00 - 2024-09-30 00:00 X-span

Y-span V, L, T: mm/s: 0 - 2

L Т Max 1.45 mm/s 0.4 mm/s 0.7 mm/s 2024-09-26 2024-09-27 2024-09-11 Date 07:32:00 Time 11:52:00 16:44:00

Vibration Monitoring Event Report

Monitoring Information										
Test Location		Unsound heritage structure	YES NO NO							
Works Monitoring	BWD North shaft excavation including excavator	Distance between geophone works (m)	and 5m							
Conducted by		Attended monitoring	YES □ NO⊠							
Date/s	01.08.2024 - 31.08.2024									
Instrumentation & Test	Procedure									
Instrument		Sigicom V12								
Calibrator	Sigicom									
Calibration Date	25/07/2023	Calibration Due	25/07/2025							
Monitor Serial #	V12 – 33770									

Preferred Criteria (circle criteria relevant to monitoring event)										
	Reinforced or framed structures	or framed or light structurally structurally human hum								
Peak Particle Velocity (PPV mm/s)	25	7.5	7.5	2.5	-	-				
Vibration Dose Value (VDV m/s ^{1.75})	-	-	-	-	0.4	0.26				

Monitoring Results										
Start Time	00:00		Duration		31 Days					
Trigger value (mm/s)	5mm/s		# of vibration	triggers	0					
	Trai	ns (y)	Ver	t (z)	Long (x)					
	Value	Freq (Hz)	Value	Freq (Hz)	Value	Freq (Hz)				
Peak Particle Velocity (PPV mm/s)	1.45	158	1.65	114	1.3	33				
Vibration Dose Value (VDV mm/s1.75)	-	-	-	-	-	-				
Below preferred criteria?	YES NO NO If "NO", provide explanation and corrective actions taken in next section									

Reophones located inside gainst house wall. Separate of the service of the servi

Interval report

Project BWD Project maintainer -

Time frame 2024-08-01 00:00 - 2024-08-31 00:00 (Australia/Sydney)

Measuring point

Description

Sensor type V12
Sensor serial no. 33770
Master(s) serial no. 108062
Latest calibration 2023-07-25

Standard (18) DIN4150-3 + Freq 250 mm/s 1-315Hz

BWD_2

Unit mm/s
Quantity Velocity
Interval time 2 minutes

Max V: 1.65 mm/s, L: 1.3 mm/s, T: 1.45 mm/s

X-span 2024-08-01 00:00 - 2024-08-31 00:00

Y-span V, L, T: mm/s: 0 - 2

V L T
1.65 mm/s 1.3 mm/s 1.

Max1.65 mm/s1.3 mm/s1.45 mm/sDate2024-08-262024-08-062024-08-27Time17:14:0020:18:0008:56:00

Multi report

APPENDIX C - SURFACE WATER MONITORING

Sydney Metro West - Central Tunnelling Package Surface Water Monitoring

TABLE 6-4 PELMINARY TRIOGER VALUES TO MAINTAIN WATER CILALITY OBJECTIVES

Receiving watercourse type (MOC)

Aquatic Ecocystem (0.5-10 NTU 7.0-8.5 80-110% None water or water

Rev: 00	Last Updated:	14/11/2024								
LEGEND										
	Preliminary Trigger Value Exceedance									

							30		- 10	2							
SW Monitoring ID	Waterway Name	Coordinates	Date	Person (Undertaking Measurements)	Sample Time	Monitoring Category	рН	Temp (degrees)	DO (mg/L)	DO (%)	Field Measurement Electrical Conductivity (mS/cm)	Electrical Conductivity (µS/cm)	Turbidity (NTU)	Visual Inspection (Oil & Grease)	Current Weather Conditions	Rainfall in last 24hrs Sydney (Observatory Hill) (mm)	Rainfall in last 24hrs ydney Olympic Park AWS (Archery Centre) (mm)
WB-D/s	White Bay	-33.866245° S, 151.180450° E	9/07/2024		10:16 AM	Post-Rainfall Monitoring	7.89	16.62	11.77	149.3	46.6	46,600	0	Clear water	Sunny	4.2	0.2
DC-D/S	Dobroyd Canal / Iron Cove Creek	-33.870604° S, 151.141474° E	9/07/2024		2:50 PM	Post-Rainfall Monitoring	8.59	17.4	13.87	151.4	4.84	4,840	29.6	Clear water	Sunny	4.2	0.2
DC-US	Dobroyd Canal / Iron Cove Creek	-33.873828 ° S, 151.128243° E	9/07/2024		2:37 PM	Post-Rainfall Monitoring	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Clear water	Sunny	4.2	0.2
SLP-D/S	St Lukes Park Canal	-33.861571° S , 151.113347° E	9/07/2024		2:28 PM	Post-Rainfall Monitoring	8.24	17.7	12.23	150.4	35	35000	1.3	Clear water	Sunny	4.2	0.2
PC-U/S	Powells Creek	-33.862145° S, 151.086294° E	9/07/2024		2:13 PM	Post-Rainfall Monitoring	9.68	18.73	11.52	127.5	0.707	707	22.9	Small amount of dirt flowing in the water	Sunny	4.2	0.2
PC-D/S	Powells Creek	-33.852589° S, 151.082359° E	9/07/2024		1:52 PM	Post-Rainfall Monitoring	7.75	16.52	16.49	189.2	23.8	23,800	7.2	Clear water	Sunny	4.2	0.2
SC-D/S	Saleyards Creek	-33.852282° S, 151.081934° E	9/07/2024		1:49 PM	Post-Rainfall Monitoring	7.84	17.7	11.69	136.7	22.9	22,900	5.9	Clear water	Sunny	4.2	0.2
HC-D/S	Haslams Creek	-33.834564° S, 151.075772° E	9/07/2024		1:24 PM	Post-Rainfall Monitoring	7.85	17.08	13.97	173	39.4	39,400	0.4	Clear water	Sunny	4.2	0.2
WB-D/s	White Bay	-33.866245° S, 151.180450° E	12/08/2024		12:50 PM	Monthly Monitoring	7.66	16	N/A	91.3	49.512	49,512	5.25	Clear water	Partly cloudy	8.4	0
DC-D/S	Dobroyd Canal / Iron Cove Creek	-33.870604° S, 151.141474° E	12/08/2024		12:25 PM	Monthly Monitoring	7.81	15.6	N/A	91.1	10.178	10,178	32.4	Clear water	Partly cloudy	8.4	0
DC-US	Dobroyd Canal / Iron Cove Creek	-33.873828 ° S, 151.128243° E	12/08/2024		12:15 PM	Monthly Monitoring	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Clear water	Partly cloudy	8.4	0
SLP-D/S	St Lukes Park Canal	-33.861571° S , 151.113347° E	12/08/2024		12:07 PM	Monthly Monitoring	7.45	16	N/A	91.7	46.26	46260	22.45	Clear water	Partly cloudy	8.4	0
PC-U/S	Powells Creek	-33.862145° S, 151.086294° E	12/08/2024		11:52 AM	Monthly Monitoring	8.16	15.7	N/A	92.1	0.366	366	48.65	Small amount of dirt flowing in the water	Partly cloudy	8.4	0
PC-D/S	Powells Creek	-33.852589° S, 151.082359° E	12/08/2024		11:35 AM	Monthly Monitoring	7.38	14.6	N/A	93.6	10.853	10,853	51.5	Clear water	Partly cloudy	8.4	0
SC-D/S	Saleyards Creek	-33.852282° S, 151.081934° E	12/08/2024		11:32 AM	Monthly Monitoring	7.5	15.1	N/A	95.1	12.11	12,115	40.08	Clear water	Partly cloudy	8.4	0
HC-D/S	Haslams Creek	-33.834564° S, 151.075772° E	12/08/2024		11:14 AM	Monthly Monitoring	7.41	15.7	N/A	94	44.5	44,565	8.63	Clear water	Partly cloudy	8.4	0
WB-D/s	White Bay	-33.866245° S, 151.180450° E	11/09/2024		10:57 AM	Monthly Monitoring	7.49	18.81	11.84	155.2	51.1	51,100	0.5	Clear water	Sunny	0	0
DC-D/S	Dobroyd Canal / Iron Cove Creek	-33.870604° S, 151.141474° E	11/09/2024		11:21 AM	Monthly Monitoring	7.61	19.45	11.68	155.3	51.7	51,700	11.1	Clear water	Sunny	0	0
DC-US	Dobroyd Canal / Iron Cove Creek	-33.873828 ° S, 151.128243° E	11/09/2024		11:32 AM	Monthly Monitoring	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Clear water	Sunny	0	0
SLP-D/S	St Lukes Park Canal	-33.861571° S , 151.113347° E	11/09/2024		11:46 AM	Monthly Monitoring	7.83	20.7	10.1	136.9	50.8	50,800	17.7	Small amount of dirt flowing in the water	Sunny	0	0
PC-U/S	Powells Creek	-33.862145° S, 151.086294° E	11/09/2024		12:00 PM	Monthly Monitoring	9.02	19.64	18.01	198.1	2.36	2,360	6.4	Small amount of dirt flowing in the water	Sunny	0	0
PC-D/S	Powells Creek	-33.852589° S, 151.082359° E	11/09/2024		12:09 PM	Monthly Monitoring	7.83	18.9	10.9	139.5	45.2	45,200	4.7	Clear water	Sunny	0	0
SC-D/S	Saleyards Creek	-33.852282° S, 151.081934° E	11/09/2024		12:12 PM	Monthly Monitoring	7.65	19.06	13.27	171.1	46.4	46,400	4.8	Clear water	Sunny	0	0
HC-D/S	Haslams Creek	-33.834564° S, 151.075772° E	11/09/2024		12:29 PM	Monthly Monitoring	7.84	20.26	10.14	135.8	50	50,000	12.6	Clear water	Sunny	0	0
WB-D/s	White Bay	-33.866245° S, 151.180450° E	10/10/2024		9:05 AM	Monthly Monitoring	8	17.97	9.63	125.1	52.9	52,900	0	Clear water	Cloudy	0	0
DC-D/S	Dobroyd Canal / Iron Cove Creek	-33.870604° S, 151.141474° E	10/10/2024		9:27 AM	Monthly Monitoring	7.83	17.17	9.64	122.2	50.7	50,700	6.3	Mild turbiduity	Cloudy	0	0
DC-US	Dobroyd Canal / Iron Cove Creek	-33.873828 ° S, 151.128243° E	10/10/2024		9:36 AM	Monthly Monitoring	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Clear water	Cloudy	0	0
SLP-D/S	St Lukes Park Canal	-33.861571° S , 151.113347° E	10/10/2024		9:49 AM	Monthly Monitoring	7.82	17.5	9.52	120.4	48.9	48,900	9.6	Mild turbiduity	Cloudy	0	0
PC-U/S	Powells Creek	-33.862145° S, 151.086294° E	10/10/2024		10:03 AM	Monthly Monitoring	9.43	16.07	10.72	109.4	2	2,000	0	Algae present in the flowing water. Clear water	Cloudy	0	0
PC-D/S	Powells Creek	-33.852589° S, 151.082359° E	10/10/2024		10:20 AM	Monthly Monitoring	7.5	17.1	8.44	102.5	41.4	41,400	0.3	Clear water	Cloudy	0	0
SC-D/S	Saleyards Creek	-33.852282° S, 151.081934° E	10/10/2024		10:16 AM	Monthly Monitoring	7.56	17.41	8.78	106.7	40.1	40,100	0.5	Clear water	Cloudy	0	0
HC-D/S	Haslams Creek	-33.834564° S, 151.075772° E	10/10/2024		10:35 AM	Monthly Monitoring	7.72	17.92	7.91	100.1	47.2	47,200	5.5	Mild turbiduity	Cloudy	0	0
WB-D/s	White Bay	-33.866245° S, 151.180450° E -33.870604° S,	13/11/2024		2:59 PM	Monthly Monitoring	6.61	23.22	7.5	105.5	49	49,000	0.5	Clear water	Partially Cloudy	0.6	0.6
DC-D/S	Dobroyd Canal / Iron Cove Creek	-33.870604° S, 151.141474° E -33.873828 ° S,	13/11/2024		2:36 PM	Monthly Monitoring Monthly	10.91	25.03	7.94	115.2	48.5	48,500	17.5	Mild turbidity	Partially Cloudy	0.6	0.6
DC-US	Dobroyd Canal / Iron Cove Creek	-33.873828 ° S, 151.128243° E -33.861571° S ,	13/11/2024		2:25 PM	Monitoring	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Not possible testing. Clear water	Partially Cloudy	0.6	0.6
SLP-D/S	St Lukes Park Canal	-33.8615/1° S , 151.113347° E -33.862145° S,	13/11/2024		2:14 PM	Monthly Monitoring Monthly	10.1	24.27	9.79	117.4	1.51	15100	40.6	Mild turbiduity. Low flow water	Partially Cloudy	0.6	0.6
PC-U/S	Powells Creek	-33.862145° S, 151.086294° E -33.852589° S,	13/11/2024		1:58 PM	Monitoring Monthly	9.41	25.52	10.57	129.8	1.65	16,500	2.1	Algae present in the flowing water. Clear water	Partially Cloudy	0.6	0.6
PC-D/S	Powells Creek	-33.652369 S, 151.082359° E -33.852282° S,	13/11/2024		1:45 PM	Monitoring Monthly	7.65	27.19	7.83	112.9	37.9	37,900	4.9	Dry creek.	Partially Cloudy	0.6	0.6
SC-D/S	Saleyards Creek	-33.632262 S, 151.081934° E -33.834564° S,	13/11/2024		1:49 PM	Monitoring Monthly	8.06	25.94	7.85	110.7	37.7	37,700	48.6	High turbidity. Dirty creek	Partially Cloudy	0.6	0.6
HC-D/S	Haslams Creek	-33.634364 S, 151.075772° E -33.866245° S,	13/11/2024		1:23 AM	Monitoring Post-Rainfall	7.33	23.76	13.75	194	47.3	47,300	7.1	Green looking water.	Partially Cloudy	0.6	0.6
WB-D/S	White Bay	-33.606243 S, 151.180450° E -33.870604° S,	3/12/2024		1:17 PM	Monitoring Post-Rainfall	8.53	26.48	6.97	102.6	46.3	46,300	0	Clear water	Cloudy	4.2	0.2
DC-D/S	Dobroyd Canal / Iron Cove Creek	-33.870604 S, 151.141474° E -33.873828 ° S,	3/12/2024		3:12 PM	Monitoring Post-Rainfall	7.94	26.61	5.19	75.9	44	44,000	11.6	High turbidity and Dirty	Slight Rain	4.2	0.2
DC-US	Dobroyd Canal / Iron Cove Creek	-33.861571° S ,	3/12/2024		3:21 PM	Monitoring Post-Rainfall	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Mild turbiduity	Cloudy	4.2	0.2
SLP-D/S	St Lukes Park Canal	-33.861371 3 , 151.113347° E -33.862145° S,	3/12/2024		3:37 PM	Monitoring Post-Rainfall	N/A	N/A	N/A	N/A	N/A	N/A	N/A	High turbidity and Dirty.	Cloudy	4.2	0.2
PC-U/S	Powells Creek	151.086294° E -33.852589° S,	3/12/2024		3:51 PM	Monitoring Post-Rainfall	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Algae present in the flowing water.	Cloudy	4.2	0.2
PC-D/S	Powells Creek	151.082359° E -33.852282° S,	3/12/2024		4:08 PM	Monitoring Post-Rainfall	9.57	26.73	10.24	133.2	12.7	12,700	7.5	High turbidity and Dirty	Slight Rain	4.2	0.2
SC-D/S	Saleyards Creek	151.081934° E -33.834564° S,	3/12/2024		4:13 PM	Monitoring Post-Rainfall	9.6	26.42	7.38	101.2	28.7	28,700	12.7	High turbidity	Slight Rain	4.2	0.2
HC-D/S	Haslams Creek	151.075772° E	3/12/2024		4:34 PM	Monitoring	10.16	26.47	7.56	107.2	22.4	22,400	12.1	Mild turbiduity	Slight Rain	4.2	0.2

APPENDIX D - GROUNDWATER MONITORING

7.1 OVERVIEW

The methodology for monitoring groundwater for the project includes:

- Assessment of groundwater level (measurement and datalogger download)
- Assessment of groundwater salinity as EC (datalogger download)
- Assessment of groundwater quality at key locations
- Assessment of WTP discharge water quality (grab samples for lab analysis and field measurements)
- Assessment of groundwater inflows (pump flow meter data)
- Implementation of quality control plan including appropriate chain-of-custody for laboratory analysis and provision of appropriate documentation.

Groundwater monitoring is to be undertaken by suitably qualified personnel at all times.

Groundwater monitoring will be undertaken in accordance with the following monitoring regime:

- Baseline monitoring will be gathered from all bores for at least two consecutive months prior to construction commencing that will interact with groundwater
- Construction monitoring will occur monthly for the first three months of construction and then quarterly thereafter
- Construction monitoring will occur at smaller intervals where the Revised Groundwater Modelling Report indicates it is required
- Continuous groundwater level and EC monitoring will only occur where recommended by the Revised Groundwater Modelling Report
- WTP discharge monitoring is outlines in Section 7.5
- Groundwater inflow monitoring is outlined in Section 7.6.

7.2 MANUAL GROUNDWATER LEVEL MEASUREMENTS

Groundwater monitoring will be overseen by personnel with appropriate qualifications and experience. Trained field personnel will complete monitoring rounds using appropriate personal protective equipment (PPE) and monitoring equipment.

The static groundwater level will be measured and recorded at each standpipe groundwater monitoring bore using an electronic groundwater level dip meter (dipper) to verify the continuous data recorded by dataloggers. The level (to the nearest millimetre) will be referenced to a known (and consistent) surveyed point at the top of the bore casing (mTOC). This measurement will be corrected to mAHD using survey data. Recorded groundwater level will be tabulated in both metres below top of bore casing (mBTOC) and mAHD.

The base of the bore will be measured and recorded periodically by lowering the dipper to the base of the bore until it touches the bottom, where possible.

7.3 CONTINUOUS GROUNDWATER LEVEL AND QUALITY (EC) MEASUREMENTS

Groundwater level (as pressure) and EC will be measured automatically by calibrated dataloggers at key monitoring locations and VWPs (pore pressure only). Continuous data (recorded every 6 hours) will be periodically validated by manual measurements. Continuous groundwater level and EC monitoring will only occur in those bores where recommended in the Revised Groundwater Modelling Report, otherwise they will be monitored quarterly.

Groundwater level/pressure measurement will be converted to mAHD using calibration coefficients, installation data, and survey data. Spreadsheets will be maintained detailing the conversion and converted groundwater level measurement.

The dataloggers will be downloaded quarterly. Dataloggers will be checked and maintained as necessary before being re-calibrated and then returned to the monitoring bore at a known depth below the top of casing.

7.4 MANUAL GROUNDWATER QUALITY SAMPLING

Groundwater quality sampling will be carried out by suitably qualified personnel at all times, in accordance with AS/NZS 5667.11:1998, and will follow these general principles:

- Sampling equipment should not change the water quality in any way; particular effort should be made to avoid cross contamination between bores and sampling equipment
- Sufficient water should be removed to ensure the sample is newly derived from the aquifer itself rather than from water that sits in the bore
- Methods of collection and storage in bottles and transportation to the laboratory should suit the type of analysis required.

Groundwater sampling may produce a potentially large volume of purged water. This water will be captured in containers and treated in the constructions WTP's or disposed of in accordance with the Waste Management Plan. To avoid large volumes of purged water, low-flow monitoring is recommended where possible. Passive sampling or no-purge sampling may be suitable in some of the monitoring bores, however, these sampling methods will only be carried out where recommended by the subject matter expert.

LIVE DATALOGGER BOREHOLES

TBM Alignment Water Levels	THE BAYS	FIVE DOCK	BURWOOD	NORTH STRATHFIELD	SYDNEY OLYMPIC PARK
AF_BH26.15 AF_BH26.30 AF_BH26.42 AF_BH30.15 AF_BH30.30 AF_BH30.48 AF_BH36 AF_BH37 AF_BH36s AF_BH37 AF_BH37 AF_BH37s SMW_BH710_v SMW_ENV715B_w	No live dataloggers from July 2024 onwards.	SMW_BH050_s SMW_BH050_w SMW_BH051_s SMW_BH051_w R248_3103_BH141 R248_3103_BH141A	BH1326 SMW_BH044w SMW_BH046s BH1333 BH1336 BH714_S BH714_W SMW_BHCINT01 SMW_BHCINT03	SMW_BH009_s SMW_BH035_s SMW_BH035_w SMW_BH038_w	SMW_BH019_W SMW_BH120_W SMW_ENV714_W

North Strathfield:

Sydney Olympic Park:

Project: Kronos MetroCTP

Construction: TBM Alignment Water Levels

Location:

Construction: FDK Water Levels

Location:

Construction: BUR Water Levels

Location:

Construction: NST Water Levels

Location:

Construction: SOP Water Levels

Location:

1/07/2024

30/12/2024

Water Level - Time Related Diagram

SMW_BH019_W.log

SMW_ENV714_W.log

SMW_ENV714_W.dip

0 100 200 300 400

New zero measurements

SMW ENV714 W.log

- 31/03/2021 8:00 PM
- SMW_ENV714_W.dip 8/09/2022 12:20 PM
- SMW_BH120_W.log 4/10/2019 7:00 AM
- SMW_BH120_W.dip 8/09/2022 11:13 AM
- SMW_BH019_W.log12/11/2018 10:00 AM
- SMW_BH019_W.dip 29/09/2022 8:36 AM

Site | 100 Hardness Hydroxide Alkalinity (OH-) as CaC Bicarbonate Alkalinity as CaCO Dichlorodifluoromethane Chloromethane Vinyl Chloride l,2,3-trichloropropai Isopropylbenzene Bromobenzene Bromobenzene
n-propyl benzene
2-chiloroboluene
4-chiloroboluene
1,3,5-trimethyl benzene
1,2,4-trimethyl benzene
1,2-d-trimethyl benzene
1,2-d-trimethyl benzene
1,3-dichlorobenzene
5ec-butyl benzene Justiness Andreas Control Cont Benzo(g)h,(iperylene Benzo(a)pyrene TEQ 0-3 ppf, 0-11 ppf, 0-12 pp amid naratic acid
Total Positive PPIox 8 PPOS
Total Positive PPOA 8 PPOS
Total Positive PPAS
Arsenic-Dissolved
Boron-Dissolved
Barium-Dissolved
Barium-Dissolved Bervilium-Dissolved Cadmium-Dissolved Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved Cobalt-Dissolved Mercurv-Dissolved Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved Lead-Dissolved Antimony-Dissolved Selenium-Dissolved Tin-Dissolved Zinc-Dissolved Zinc-Disselved
Iron-Disselved
Iron-Disselved
Iron-Disselved
Boron-Total
Boron-Total
Boron-Total
Beryllium-Total
Cadmisum-Total
Cadmisum-Total
Chromium-Total
Chromium-Total
Chromium-Total
Cheryl-Total
Manganese-Total
Manganese-Total
Mickel-Total
Antimony-Total
Jead-Total
Jead-Total
Iron-Total
Iron-Total
Iron-Total 70 63 50 70 37 43 ×0.05 ×0.05 0.07 40.2 pg/L 9
50.4 us/L 3
0.05 pg/L 4
312 pg/L 5
74.4 pg/L 6
6.8 us/L 2
74.4 pg/L 6
6 pg/L 3
2.4 pg/L 6
2.5 pg/L 3
2.6 pg/L 3
2.6 pg/L 3
2.7 pg/L 6
2.7 pg/L

Column	Site				Syd	ney Olympic Park		Jun-24		T
Column C	Month Borehole numbers	Trigger values	Unit	Nov-24 AF_BH36	Sep-23	Dec-23	Mar-24 SMW_E		Sep-24	Nov-24
Column	Calcium - Dissolved Potassium - Dissolved Sodium - Dissolved	504	mglL	2 8 390	26 12 90	260 38 1800	12 14	10 5.6	13 5.1 63	19 9
	Magnesium - Dissolved Hardness	568.8	mgt	12	5.7	240		2	5	6.1
March Marc	Hydroxide Alkalinity (OH-) as CaCO3 Bicarbonate Alkalinity as CaCO3	50 1800	mgt. mgt.	KS 100	<5 100	K5 560		KS 50	KS 67	<5 100
Manuscript 14	Total Alkalinity as CaCO3 Sulphate, SO4	1800	mat. mgt.	100 450	100	560 150	110 10	50 5	67 14	100
Monethemore 10		8100 22.8	mgt. %	-7	-3	-1	5	-4	95 -5	-2
Mathematical	Nitrate as N in water	3.72	mgt	0.18	0.062	K0.005	< 0.005	0.26	<0.005	0.01
March Marc	Dichlorodifluoromethane	100	pgt	<10	<10	<10	<10	<10	<10	<10
Section	Vinyl Chloride	10	pg/L	<10	<10	<10	<10	<10	<10	<10
March Marc	Chloroethane	100	un't.							
Columns	1,1-Dichloroethene		pgt.	<1		ci ci	<1		<1 <1	<1
December 19	1,1-dichloroethane	3.6		<1			<1	<1	<1	<1
Column	Bromochloromethane Chloroform	10	pgt.							
Column	2,2-dichloropropane 1,2-dichloroethane			_		ci ci		d d		
Control	1,1,1-trichloroethane 1,1-dichloropropene	10	pgt.	<1	<1	ki ki	<1	ki	<1	<1
March	Cyclohexane		pgt		d d	ci ci		d d		
Marchanter	Benzene Dibromomethane			<1	<1	<1 <1		d d		
March Marc		10								
Mathematical 1	Bromodichloromethane				d d	ct ct		d d	<1	
Table 10	cis-1,3-dichloropropene	10	µgt.	<1	<1	<1 <1	<1	<1 <1	<1	<1
Non-contractions	Toluene 1,3-dichloropropane	3.6 10	pgt.		<1	d d				
Coloranismon	Dibromochloromethane	10	pgt.	<1	kt kt	d d	<1	k1 k1	<1 <1	<1 <1
March	1.1.1.2-tetrachloroethane	10	unt.	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Secretary 1	Bromoform	10	pgt.		<1 <1 <2	k1 k1 k2		k1 k1 k2	<1 <1 <2	<1 <1 <2
Company	Styrene 1,1,2,2-tetrachloroethane	10	pgt.			<1 <1				
Margan processor 1	o-xylene 1,2,3-trichloropropane	10	pgt.	<1	<1		<1	<1	<1	<1
Advantaments	hopropylbenzene		pgt.							
Automorphisms	2-chlorotoluene	10	µg/L							
1.1. 1.1.	1,3,5-trimethyl benzene	10	pg/L	<1	<1	c1	<1	<1	<1	<1
Control prisones	1,2,4-trimethy1 benzene	2.4	pgt.		d	d d		d		
Compart Johnson	Sec-butyl benzene	1.2	µg/L							
Assorber 10	4-isopropyl toluene	10	pgt.	<1		4	5	<1	<1	<1
1.1. Authorisation	n-butyl benzene 1,2-dibromo-3-chlorogropane	10	pg/L	<1	d	ci ci	<1	ct	<1	<1
### WINGLE COLUMN 1997 1997	1.2.4-trichlorobenzene Hexachlorobutadiene	10	uat.	d d	d	ci ci	<1 <1			
March Colorado C	TRH C6 - C9 TRH C6 - C10	264	pgt	<10 <10	<10 <10	<10 <10	<10 <10	k10 k10	<10 <10	<10 <10
## Emplement ## 12	TRH C6 - C10 lessBTEX (F1) Benzene	216 76.8	pgt.	<10 <1	<10 <1	<10 <1	<10 <1	k10 k1	<10 <1	<10 <1
Bartechness	Ethylbenzene m+p-xylene	2.4	pgt.	<1 <2	d d	k1 k2	<1 <2	k1 k2	<1 <2	<1 <2
The COL COL 1980	Nachthalene TRH C10 - C14	1.2 28.8 296	ust.	<1 <1 <50	<1 <1 <50	<1 <1 75	<1 <1 <50	k1 k1 k50	<1 <1 <50	<1 <1 <50
Temporal Color Col	TRH C15 - C26 TRH C29 - C36	1800	pgt.	<100 <100	<100 <100	130 <100	<100	<100 <100	<100 <100	<100 <100
The Cold Cold				<50 <50 <50	<50 <50	200 84 84	110 <50 <50	K50 K50	<50 <50	<50 <50
Number 13	TRH >C16 - C34	1440	unt. pgt.	<100 <100		160 <100	<100	120 <100	<100	<100 <100
American	Naphthalene	28.8	rgt.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1
Process	Acensphthene	10	µg\.	<0.1 <0.1		<0.1 <0.1	<0.1			<0.1 <0.1
Bennichterner		1	µg/L	<0.1 <0.1	<0.1 <0.1	K0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
Bennsh Anthrusentess	Benzo(a)anthracene	10	µgt.	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	K0.1 K0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Description recent 19	Benzo(b.j+k)fluoranthene Benzo(a)tryrene	20 1	ygt. uat.	<0.2 <0.1	<0.2 <0.1	K0.2 K0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1
Bearing 195	Dibenzo(a,h)anthracene	10	pgt.	<0.1 <0.1	<0.1 <0.1	K0.1 K0.1		<0.1 <0.1	<0.1 <0.1	
Performancement out - Performancement - Performa	Benzo(a)pyrene TEQ		μgt	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1
Performance of the Company of the	Perfluoropentane suffonic acid	0.192	pgt							
Preference of the color of th	Perfluoroheptanesulfonic acid Perfluorooctanesulfonic acid	0.012	µg/L	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01
Pubmic processor Color C	Perfluorodecane sulfonic acid		µg/L	< 0.02	<0.02	K0.02	< 0.02	<0.02	<0.02	< 0.02
Pubmic processor Color C	Perfluoropentanoic acid Perfluorohexanoic acid	1.068	unt. pgt.	<0.02 <0.01	0.02	< 0.02		<0.02 <0.01	<0.02 <0.01	<0.02 <0.01
Performentment and d 2 yah	Perfluoroneptanoic acid Perfluoronetanoic acid PFOA Perfluoronepanoic acid	0.264 0.78 0.42	pgt. pgt	<0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01		<0.01 <0.01 <0.01
Preference former	Perfluorodecanoic acid Perfluoroundecanoic acid	0.2 0.2	pgt.	<0.02	<0.02 <0.02	k0.02 k0.02	<0.02	K0.02 K0.02	<0.02 <0.02	<0.02 <0.02
1.5 1.5	Perfluorododecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid	1 5	pgt.	<0.1 <0.5	<0.1 <0.5	K0.1 K0.5	<0.1 <0.5	k0.1 k0.5	<0.1 <0.5	<0.1 <0.5
10.2775	4:2 FTS 6:2 FTS	0.192	pgt.	< 0.01	<0.01 <0.01	< 0.01	< 0.01	<0.01 <0.01	<0.01	< 0.01
As being performens authorisotics 4.2 op. 1 605	10:2 FTS Perfluorooctane suffonamide	0.2 1	pgt. unt.	<0.02 <0.1	<0.02 <0.1	<0.1	<0.02 <0.1	<0.02 <0.1	<0.1	<0.02 <0.1
No. 00 performance and months 0.5 ppf. 0.55	N-Methyl perfluorooctane suffonamide N-Ethyl perfluorooctanesuffonamide		µg1.							
MED preference software and part MED preference	N-Me perfluorocctane suffonamid cethanol									
Part	N-Et perfluorooctaneauffonamid oethanol	5								
Manual Content	amid paratic acid									
Teach Property Teac	amid paretic acid Total Positive PFHxS & PFOS Total Positive PFOA & PFOS	0.708 1.032	uat. µgt.	<0.01 <0.01	<0.01 <0.01	0.01	0.01 0.01	×0.01 ×0.01	<0.01 <0.01	0.01
Broth Charles Broth Brot	Total Positive PFAS Arsenic-Dissolved	5.64 32.4	ygt.	<0.01 <1	8	1 50	3 60	₹0.01 4	3 30	0.03 3
October Control Cont	Barium-Dissolved	6540 5	pgt. pgt.	12	30 <0.5	21000 <0.5	580 <0.5	16 <0.5	81 <0.5	71 <0.5
Mercury Stockholm		19.2	ust.	0.2 <1 29	<0.1 <1 3	<0.1 <1 <1		<0.1 2 8	<0.1 <1 2	<0.1 <1 1
Mesoperate Octobried	Mercury-Dissolved	0.05	unt.	36 <0.05	<1 <0.05	<1 <0.05	<1 <0.05	<1 <0.05	<1 <0.05	<1 <0.05
Authority	Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	357.6 74.4 58 P	pgt. pgt.		26 7 2	1 2	48 <1 2	25 <1 2	1 1	/0 4 1
Section - Considered	Lead-Dissolved Antimony-Dissolved	1 4.5	pgt.	<1	<1 <1	<1 <1	<1	k1 k1	<1	<1 <1
Pres-Chiche Column Colum	Selenium-Dissolved		pgt.		<1 <1 14	<1 <1 18		<1 <1 31	<1 <1 3	<1 <1 4
Page	Iron-Dissolved Arsenic-Total	6235	pgt. unt.	20 4 220	140 16 60	980 9 60	480 5 50	310 4 30	2 30	350 3 50
Carbonom Potal Cat	Beryllium-Total	7080 1.05	pgt.	73	160	20000		24 <0.5	3600 <0.5	82 <0.5
Cobab Teal 25.4 art. 5 5 41 c1 c1 c1 c1 c2 c3 c3 c3 c3 c3 c3 c3	Cadmium-Total Chromium-Total Conner-Total	0.48 63.6	uat. ugt	0.3 10 53	0.2 19 45	0.2 14 36	<0.1	<0.1 3	<0.1 1 7	<0.1 <1
Majabase-Tali	Cobalt-Total Mercury-Total	50.4 0.05	uat. ugt	51 <0.05	6 <0.05	5 <0.05	<1 <0.05	<1 <0.05	<1 <0.05	<1 <0.05
Lian-17dal 74.4 pgt. 4 15 12 2 2 2 2 1 2 1 1	Manganese-Total Molybdenum-Total Nickel-Total	312 74.4	pgt.	<1 54	8 16	4	2	x1 3	82 <1 2	4 2
		74.4 6	pgt.	24 <1	17	12 <1	2 <1	2 <1	2 <1	<1
Zinc-Total 360 pgt 150 290 160 41 49 21 8 Iren-Total 28400 pgt 22000 7900 12000 1200 890 2300 670	Zinc-Total	2.4 3.6 360 20400	pg/L	1 1 160	1 290	1 160	<1 <1 41	<1 <1 49	<1 <1 21	<1 <1 8

Site Month	Month	Tunnel SOP- NS	Mar-23	Jun-23	Tunr Sep-23	el SOP-NS Dec-23	May-24 7158	Jun-24	Sep-24	Nov-24	Month	Tunn	Mar-23 Jun-23	Month	Tripper	_	Mar-23 Jun-23		Nov-23 V BH046R	Feb-24 May-24
Borehole numbers Calcium - Dissolved Potassium - Dissolved Sodium - Dissolved	Borehole numbers Calcium - Dissolved Potassium - Dissolved Sodam - Dissolved	Trigger values Unit 168 mg/L 79.2 mg/L 5040 mg/L	110	120 46 480	130 48 4000	180	210 44 4400	200 69 4200	180 50 2500	160 37 4500	Borehole numbers Calcium - Dissolved Potassium - Dissolved Sodium - Dissolved	Trigger Unit wakes 1600 mg/L 372 mg/L 12000 mg/L	1100 1300	Borehole numbers Calcium - Dissolved Potassium - Dissolved Sodium - Dissolved	192 m 42 m 2640 m	Init	50 160 12 35 800 2200	150 36 2000	140 30 1900	86 130 30 32 1600 1500
Magnesium - Dissolved Hardness Hydroxide Alkalinity (OH-) as CaCO3	Magnesium - Dissolved Hardness Hydroxide Alkalinky (OH-) as CaCO3	492 mgCaCO: 2400 mgCaCO: 50 mg/L	14 320 <5	30 410 ×5	400 2000 <5	280 1600 <5	590 3000 ⊀5	470 2500 <5	280 1600 <s< td=""><td>530 2600 <5</td><td>Magnesium - Dissolved Hardness Hydroxide Alkaliniky (OH-) as CaCO3 Bicarbonate Alkaliniky as CaCO3</td><td>5400 mgCaCO</td><td>3100 3800</td><td>Hardness Hydroxide Alkalinity (OH-) as CaCO3</td><td>1800 mgC</td><td>ngt 2 acos a 1 ngt 4</td><td>70 270 500 1500 (5 <5</td><td>280 1500 <5</td><td>230 1300 <5</td><td>200 1100 1100 <5 <5</td></s<>	530 2600 <5	Magnesium - Dissolved Hardness Hydroxide Alkaliniky (OH-) as CaCO3 Bicarbonate Alkaliniky as CaCO3	5400 mgCaCO	3100 3800	Hardness Hydroxide Alkalinity (OH-) as CaCO3	1800 mgC	ngt 2 acos a 1 ngt 4	70 270 500 1500 (5 <5	280 1500 <5	230 1300 <5	200 1100 1100 <5 <5
Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 Sulphate, SO4	Bicarbonate Akalinity as CaCO3 Carbonate Akalinity as CaCO3 Total Akalinity as CaCO3 Total Akalinity as CaCO3 Sulphase, SO4	545 mgt. 324 mgt. 645 mgt. 660 mgt.	<5 240	250 x5 250 110	<5 500 650	440 <5 440 610	640 <5 640	<5 <5 570	470 ×5 470 490	<5 590 760	Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 Sulphate, SO4 Chloride, Cl	216 mgt. 50 mgt. 216 mgt. 2880 mgt.	48 18 45 45 48 18 2300 2300	Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 Sulphate, SO4	50 m 50 m	ngt 4	70 530 5 <5 70 530 30 540	550 45 550 360	550 45 550 510	.5 <5 630 650 390 500
Chloride, CI Ionic Balance Ammonia (as N in water) Nitrate as N in water	Chloride, CI Ionic Balance Ammonia (as N in water) Nitrate as N in water	7500 mgt. 14.4 % 2.4 mgt.	720 -4 0.65	950 -6 0.14	7100 -2 0.8	4900 5 1	9400 -2 1.4	6700 4 0.74	4100 3 0.35	9800 -10 1.3	Chloride, Cl Ionic Balance Ammonia (as N in water) Nitrate as N in water	21600 mg/L 10.8 % 6 mg/L	15000 17000 2 4 4.5 5	Ionic Balance	4800 m 10.596 0.552 m	ngt 3 % d	600 4000 6 -2 1.34 0.46	2600 13 0.45	3200 -1 0.33	300 2800 3 +6 0.24 0.31
Total Nitrogen in water Dichlorodifluoromethane	Total Nitrogen in water Dichlorodifluoromethane	3.72 mg/L 100 μg/L	1.9 <10	2 <10	1.4	1 <10	1.5 <10	0.9 <10	1.3	<0.005 1.4 <10	Total Nitrogen in water Dichlorodifluoromethane	0.228 mgt. 7.44 mgt. 100 µgt.	6.2 5.7 <10 <10	Total Nitrogen in water Dichlorodifluoromethane	1.44 m	ışt.	14 12	<10 <10	0.4	19 0.9 <10 <10
Chloromethane Vinyl Chloride Bromomethane	Citiconmethane Vinyl Chloride Beomomethane	100 µg£. 10 µg£. 10 µg£.	<10 <10	<10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10	<10 <10 <10	Chloromethane Vinyl Chloride Bromomethane	100 µgt. 10 µgt. 10 µgt.	<10 <10 <10 <10 <10	Vinyl Chloride Bromomethane	100 p	pt o	(100 <10 (100 <10 (100 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10 <10 <10 <10
Chloroethane Trichlorofluoromethane 1,1-Dichloroethene	Chloroethane Trichlorofluoromethane 1,1-Dichloroethene	100 µg£ 100 µg£ 10 µg£	<1	<10 <10	<10 <10	<10 <10 <1	<10	<10 <10	<10 <10	<10 <10 <1	Chlorosthane Trichloroffsoromethane 1,1-Dichlorosthene	100 µgL 100 µgL 10 µgL	<10 <10 <10 <10 <1 <1	Chloroethane Trichloroffsocomethane 1,1-Dichloroethene	100 p	pt s	(100 <10 (100 <10 (10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <10 <10 <1 <1
Trans-1,2-dichloroethene 1,1-dichloroethene Cis-1,2-dichloroethene	Trans-1,2-dichloroethens 1,1-dichloroethens Cis-1,2-dichloroethens	10 μg/L 10 μg/L	<1 <1	<1 <1	<1	<1 <1	d d	d d	<1 <1	d d	1,1-dichloroethane Cis-1,2-dichloroethane	10 pgt. 10 pgt. 10 pgt.	d d	Trans-1,2-dichloroethene 1,1-dichloroethene Cis-1,2-dichloroethene		gl.	(10 <1 (10 <1 (10 <1	<1 <1	d d	d d d d
Bromochloromethane Chloroform 2,3-dichloropropane	Bromochloromethane Chloroform 2,2-dichloropropane	10 μgt. 10 μgt. 10 μgt.	<1 <1	k1 k1	<1 <1	<1 <1	<1 <1	<1 <1 <1	d d	<1 <1 <1	Bromochloromethane Chloroform 2,2-dichloropropane	10 pgt. 10 pgt. 10 pgt.	त त त त त	Bromochloromethane Chloroform 2,2-dichloropropane		gt s	(10 <1 (10 <1 (10 <1	<1 <1	d d	d d d d
1,2-dichloroethane 1,1,1-drichloroethane 1,1-dichloropropene	1,2-dichloroethane 1,1,1-trichloroethane 1,1-dichloropropene	10 μgt. 10 μgt. 10 μgt.	<1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	1,2-dichloroethane 1,1,1-trichloroethane 1,1-dichloropropene	10 pgt. 10 pgt. 10 pgt.	d d d d	1,2-dichloroethane 1,1,1-trichloroethane 1,1-dichloropropene	10 p	ot a	(10 <1 (10 <1 (10 <1	<1 <1 <1	d d	c1
Cyclohexane Carbon tetrachloride Berusene	Cyclohexane Carbon tetrachloride Benzene	10 µg£ 1 µg£ 1 µg£ 10 µg£	<1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	d d d	<1 <1 <1	<1 <1 <1	Cyclohexane Carbon tetrachloride Benzene	10 pgt. 1 pgt. 1 pgt. 10 pgt.	त त त त त त	Cyclohexane Carbon tetrachloride Benzene	10 p	gt d gt d	(10 <1 (10 <1 (10 <1	41 41 41	4 4	d d d d d d
Dibromomethane 1,2-dichloropropane Trichloroethene	Dibromomethane 1,2-dichloropropane Trichloroethene	10 µg£ 10 µg£ 1 µg£	<1	<1 <1	<1	<1 <1	d	<1 <1	<1 <1	<1 <1	Dibromomethane 1,2-dichloropropane Trichloroethene	10 pgt	d d	Dibromomethane 1,2-dichloropropane Trichloroethane		gl.	(10 <1	<1 <1	d d	d d
Bromodichloromethane trans-1,3-dichloropropene	Bromodichloromethane trans-1,3-dichloropropene	1 μgt. 10 μgt. 10 μgt.	<1	<1	<1	<1	<1	<1 <1	<1 <1	<1	Bromodichloromethane trans-1,3-dichloropropene	1 pgt. 1 pgt. 10 pgt.	a a	Bromodichloromethane trans-1,3-dichloropropene	1 p	gt ,	(10 <1	d d	d d	c1
cis-1,3-dichloropropene 1,1,2-trichloroethane Toluene	cis-1,3-dichleropropene 1,1,2-trichleroethane Toluene	10 µgt. 1.2 µgt.	<1	<1 <1	<1	<1 <1	र्व	d d	d d	<1	cis-1,3-dichloropropene 1,1,2-trichloroethane Toluene	10 µgL 10 µgL 10 µgL	a a a a	cis-1,3-dichloropropene 1,1,2-trichloroethane Toluane	10 p	pt ,	(10 <1	<1	d d	d d
1,3-dichloropropane Dibromochloromethane 12,2-dibromoethane Tetrachloroethane	1,3-dichleropropane Dibromochloromethane 1,2-dibromochlane Tatrachloroethane	10 µg£ 10 µg£ 10 µg£ 10 µg£	<1 <1	k1 k1 k1 k1	<1 <1 <1 <1	(1 (1 (1	d d d	d d d	61 61 61	त त त	1,3-dichloropropane Dibromochforomethans 1,2-dibromoethans Tetrachloroethans	10 pgt 10 pgt 10 pgt 10 pgt	a a a a a a	1,3-dichloropropane Dibromochloromethane 1,2-dibromoethane Tetrachloroethane	10 p	ot 4	(10 <1 (10 <1 (10 <1 (10 <1	41 41 41	d d d	d d d d d d d d d d d d d d d d d d d
1.1.1.3-tetrachforcethane Chlorobenzene Eftytbenzene Bronoform	1.1.1.2-tetrachloroethane Chlorobenzene Ethylbenzene Etnymann	10 µg/L 10 µg/L	<1 <1	<1 <1 <1	<1 <1 <1	d d d	41 41 41	d d d	41 41 41	41 41 41	1.1.1.2-tetrachloroethane Chlorobenzene Ditylbenzene Brownform	10 pgt. 10 pgt. 10 pgt. 10 pgt. 10 pgt. 10 pgt.	d d d d d d	1.1.1.2-tetrachloroethane	10 s 10 s 10 s	mt x	(10 <1 (10 <1 (10 <1	41 41 41	2 0 0 0	c1
m-p-xylene Syrene 1,1,2,2-tetrachicroethane	m-p-sylene Styrene 1,1,2,2-tetrachloroethane	10 µg£ 20 µg£ 10 µg£ 10 µg£	42	42 41 41	<2 <1 <1	<2 <1 <1	d d	4 4	42 41 41	<2 <1 <1	m+p-xylene Styrene 1,1,2,2-tetrachloroethane	20 µg.t. 10 µg.t. 10 µg.t.	a a a	m+p-xylene Styrene	20 p	et e	(20 <2 (10 <1	<2 <1	42 41	c2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
0-xylene 1,2,3-trichloropropane Isopropylberzene	o-xylene 1,2,3-irichloropropane isopropy/benzene	10 μg£ 10 μg£ 10 μg£	<1 <1	<1 <1 <1	d d	d d	<1 <1 <1	d d	d d	d d	o-xylene 1,2,3-trichloropropane Isopropy(benzene	10 pgt. 10 pgt. 10 pgt.	a a a a a a	o-xylene 1,2,3-trichloropropane Isopropylbenzene		gt d	(10 <1 (10 <1 (10 <1	<1 <1	d d	c1 <1 c1 <1 c1 c1
Bromobenzene n-propyl benzene 2-chlorotoluene	Bromobenzene n-propyl benzene 2-chlorotolusna	10 µg£ 10 µg£ 10 µg£	<1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	Bromobenzene n-propyl benzene 2-chlorotoluene	10 pgt. 10 pgt. 10 pgt.	d d d d	Bromobenzene n-propyl benzene 2-chlorotoluene	10 p	pt s pt s	(10 <1 (10 <1 (10 <1	d d	d d	d d d d d d
4-chloroboluene 1,3,5-trimethyl benzene Teri-bulyl benzene	4-chicrotoluene 1,3,5-trimethyl benzene Tert-butyl benzene	10 µg£ 10 µg£ 10 µg£	<1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	4-chlorotoluene 1,3,5-trimethyl benzene Tent-butyl benzene	10 pgt. 10 pgt. 10 pgt.	a d a a a d	4-chlorotoluene 1,3,5-trimethyl benzene Tert-butyl benzene	10 p	pt . pt .	(10 <1 (10 <1 (10 <1	<1 <1 <1	d d	(1 (1 (1 (1 (1 (1
1,2,4-trimethy1 benzene 1,3-dichlorobenzene Sec-bsty1 benzene	1,2,4-trimethyl berzene 1,3-dichlorobenzene Sec-butyl berzene	10 µg£. 10 µg£.	<1	<1 <1 <1	<1 <1 <1	<1 <1 <1	d d d	त त त	<1 <1 <1	<1 <1 <1	1,2,4-trimethyl benzene 1,3-dichlorobenzene Sec-butyl benzene	10 pgt. 10 pgt. 10 pgt.	d d d d d d	1,2,4 trimethyl benzene 1,3-dichlorobenzene Sec-butyl benzene	10 p		(10 <1 (10 <1 (10 <1	<1 <1 <1	च च च	c1
1,4-dichlorobenzene 4-isopropyl toluene 1,2-dichlorobenzene	1,4-dichlorobenzene 4-isopropyl toluene 1,2-dichlorobenzene	10 μgt. 10 μgt. 10 μgt.	<1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1	<1 <1	<1	1,4-dichlorobenzene 4-isopropyl toluene 1,2-dichlorobenzene	10 pgt 10 pgt 10 pgt	d d d d	1,4-dichlorobenzene 4-isopropy1 totuene 1,2-dichlorobenzene	10 p	ot .	(10 <1 (10 <1 (10 <1	<1 <1 <1	d d	c1 <1 c1 <1 <1 <1
n-butyl benzene 1,2-dibromo-3-chlorogropane 1,2-4-irichlorobenzene	n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-tichlorobenzene	10 μg/L 1 μg/L 10 μg/L	<i c<="" td=""><td><1 <1 <1</td><td><1 <1 <1</td><td>ci ci ci</td><td><1 <1 <1</td><td>त त त</td><td><1 <1 <1</td><td><1 <1 <1</td><td>n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-trichlorobenzene</td><td>10 pgt. 1 pgt. 10 pgt.</td><td>a d a d a a</td><td>n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-trichlorobenzene</td><td>10 p</td><td>pt .</td><td>(10 <1 (10 <1 (10 <1</td><td><1 <1 <1</td><td>d d d</td><td>ci ci ci ci ci ci</td></i>	<1 <1 <1	<1 <1 <1	ci ci ci	<1 <1 <1	त त त	<1 <1 <1	<1 <1 <1	n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-trichlorobenzene	10 pgt. 1 pgt. 10 pgt.	a d a d a a	n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-trichlorobenzene	10 p	pt .	(10 <1 (10 <1 (10 <1	<1 <1 <1	d d d	ci ci ci ci ci ci
Hexachterobutadiene 1,2,3-irichteroberusene TRH C6 - C9 TRH C6 - C10	Hexachiorobitadiana 1,2,3-trichiorobienzene TRH C6 - C9 TRH C6 - C10	1 μgt. 10 μgt. 100 μgt. 100 μgt.	<10	<1 <1 <10 <10	<1 <1 <10 <10	<1 <1 <10 <10	<1 <1 <10 <10	<1 <1 <10 <10	<1 <1 <10 <10	<1 <1 <10 <10	Hexachlorobutadiene 1,2,3-trichlorobenzene TRH C6 - C9 TRH C6 - C10	1 pgt. 10 pgt. 100 pgt. 100 pgt.	<1 <1 <1 <1 <1 <1 <10 <10 <10 <10	Hexachlorobutadiene 1,2,3-trichlorobenzene TRH C6 - C9 TRH C6 - C10	100 p	gt s gt s	(10 <1 (10 <1 (100 <10 (100 <10	<1 <1 <1 <10	<1 <1 <10 <10	C1 <1 C1 <1 <10 <10 <10 <10
TRH C6 - C10 lessBTEX (F1) Benzene Toluene	TRH C6 - C10 lessBTEX (F1) Benzene Toluene	100 µg/L 1 µg/L 1.2 µg/L	KI .	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	TRH C5 - C10 lessBTEX (F1) Benzene Tolsene	100 pgt. 100 pgt. 1 pgt. 10 pgt. 10 pgt.	<10 <10 <1 <1 <1 <1	TRH C6 - C10 lessBTEX (F1) Berzene Toluene	100 p	pl s pl s	(100 <10 (10 <1 (10 <1	<10 <10 <1	<10 <1 <1	<10 <10 <1 <1 <1 <1
Ethylbancene m+p-xyleme 0-xylene Nachthalene	Ethylbenzene m+p-xylene o-xylene Nachthalene	10 µg£ 20 µg£ 10 µg£ 10 µg£ 216 µg£	e1	k2 k1 k1	<2 <1 <1	<2 <1 <1	<2 <1 <1	d d	62 61 61	<2 <1 <1	Ethylberzene m+p-xylene o-xylene Nachthalene	20 µgt. 10 µgt. 10 µgt. 156 µgt.	a a a a a a	Ethylberusene m+p-xylene o-xylene Nachthalene TRH C10 - C14	10 p 20 p 10 p 10 u	gt d gt d	20 <2 (10 <1 (10 <1	<1 <2 <1	4 4	2 2 31 41 41 41
TRH C10 - C14 TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36)	TRN C10 - C14 TRN C15 - C25 TRN C20 - C36 TRN C20 - C36 Total +ve TRN (C10-C36)	180 pgf. 1000 pgf. 396 pgf.	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	TRH C10 - C14 TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36)	1000 pgt. 1000 pgt. 156 pgt.	<100 <100 <100 <100 110 <50	TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36)	500 p 516 p 1000 p 864 p	gt d gt d	(100 <100 (100 <100 (100 <100 (50 <50	<100 <100 <50	<100 <100 <50	<100 <100 k100 <100 k100 <100 <50 <50
TRH >C10 - C16 TRH >C10 - C16 (E2) TRH >C10 - C16 (E2) TRH >C16 - C34 TRH >C34 - C40	TRH > C10 - C16 TRH > C10 - C16(exx Naphthalene (F2) TRH > C14 - C34 TRH > C24 - C40	228 µgit. 228 µgit. 168 µgit. 1000 µgit.	<50 <100	<50 <50 <100 <100	<50 <50 <100 <100	<50 <50 <100 <100	<50 <50 <100 <100	<50 <50 <100 <100	<50 <50 <100 <100	<50 <50 <100 <100	TRH >C34 - C40	168 µgt. 168 µgt. 1600 µgt. 1600 µgt.	110 <50 110 <50 <100 <100 <100 <100	TRH > C10 - C16less Naphthalene (F2) TRH > C16 - C34 TRH > C34 - C40	684 p 684 p 228 u 1000 p	pt s pt s	(50 <50 (50 <50 (100 <100 (100 <100	<50 <50 <100 <100	<50 <50 <100 <100	<50 <50 <50 <50 <100 <100 <100 <100
Total eve TRM (>C00-C40) Naphthalene Aconaphthylene Aconaphthylene	Total +ve TRH (-C10-C49) Naphthalene Acanaphthylene Acenaphthene	384 µg£. 10 µg£. 10 µg£. 10 µg£.	<0.1	<0.2 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	Total +ve TRH (>C10-C40) Naphthalene Acenaphthylene	168 pgt. 10 pgt. 10 pgt. 10 pgt.	110 <50 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1		912 p 10 p 10 p		c50 <50 c0.2 <0.2 c0.1 <0.1	<50 <0.2 <0.1	<0.1 <0.1 <0.1	.50 <50 0.2 <0.1 0.1 <0.1
Acenaphthene Fluorene Phenanthrene Anthracene	Phenanthrene Anthracene	10 µg£ 1 µg£ 1 µg£	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	Acenaphthene Fluorene Phenanthrene Arthracene	10 pgt. 10 pgt. 10 pgt. 1 pgt. 1 pgt.	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Acensphhere Fluorene Phenanthrene Anthracene	1 ,	pt 4	0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	x0.1
Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Fluoranthena Pyrene Benzojajarithricene Chrysene	1 µg£ 10 µg£ 10 µg£ 10 µg£	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	Pluoranthene Pyrene Benzo(a)anthracene Chrysene	1 ppt 10 ppt 10 ppt 10 ppt 10 ppt	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Plucranthene Pyrene Benzo(a)anthracene Chrysene	10 p	gt s	0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Benzo(b,j-k)Sucranthene Benzo(alovrene Indeno(1,2,3<,d)pyrene Dhenzo(a,h)anthracene	Benzo(b,j+k)fluoranthene Benzo(alovene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	20 µgt. 1 µgt. 10 µgt. 10 µgt.	<0.1 <0.1 <0.1	K0.2 K0.1 K0.1 K0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	Benzo(b.j+k)fluoranthene Benzo(alzvrene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)arthracene	20 pgt. 1 pgt. 10 pgt. 10 pgt.	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(b.j-k/fluoranthene Benzo(alovrene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	10 p	et e et e	0.2 <0.2 0.1 <0.1 0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	(0.2 < 0.2 (0.1 < 0.1 (0.1 < 0.1 (0.1 < 0.1
Benzo(g,h,l perylene Benzo(a)pyrene TEQ Total +vePAH's	Benzo(g.h.(perylene Benzo(s)pyrene TEQ Total +vePAH's	10 μg/L 50 μg/L 10 μg/L		<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.1 <0.5	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	Benzo(g,h.i)perylene Benzo(s)pyrene TEQ Total+vePAH's	10 pgt. 50 pgt. 10 pgt.	<0.1 <0.1 <0.5 <0.5 <0.1	Benzo(g.h.) perylene Benzo(s) pyrene TEQ Total +ve PANY	10 p		0.1 <0.1 0.5 <0.5 0.1 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	.0.1 <0.1 <0.5 <0.5 0.16 <0.1
Perfluorobutanesuffonic acid Perfluoroperfanesuffonic acid Perfluorobexanesuffonic acid - PFHxS	Perfluorobutareau/fonic acid Perfluoropentareau/fonic acid Perfluorobexaneau/fonic acid - PFNtsS	0.024 pgt. 0.1 pgt. 0.024 pgt. 0.1 pgt.	<0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.1 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	Perfluorobutanesulfonic acid Perfluoropentanesulfonic acid Perfluorobexanesulfonic acid - PFHtsS	0.1 pgt 0.1 pgt	<0.01 <0.01 <0.01 <0.01 <0.01	Perfluorobutaneauffonic acid Perfluoropentaneauffonic acid Perfluorohexaneauffonic acid - PFHxS	0.1 p	pt s	0.01 <0.01 0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Perfluorohaptane suffonic acid Perfluoropotane suffonic acid PFOS Perfluorode cane suffonic acid Perfluorobutanoic acid	Perfluorecheptamasulfonic acid Perfluorecoctamasulfonic acid Perfluorecde canesulfonic acid Perfluorecde canesulfonic acid Perfluorechetamoic acid	0.1 µg£ 0.1 µg£ 0.2 µg£ 0.2 µg£	<0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.02 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01	<0.01	<0.01 <0.01 <0.02	<0.01 <0.02	Perfluoroheptanesuffenic acid Perfluoroctanesuffenic acid PFOS Perfluorodecanesuffenic acid Perfluorobatanoic acid	0.1 pgt 0.1 pgt 0.2 pgt	<0.01 <0.01 <0.01 <0.02 <0.02 <0.02	Perfluoroheptanesulfonic acid Perfluoroctanesulfonic acid PFOS Perfluorodecanesulfonic acid Perfluorobutanoic acid	0.1 p 0.1 p 0.2 p 0.2 p	pt ,	0.01 <0.01	<0.01 <0.02	<0.01 <0.02	×0.01 ×0.01 ×0.02 ×0.02
Perfluoropentanoic acid Perfluorohexanoic acid Perfluorohexanoic acid	Perfluoropertanoic acid Perfluorohexanoic acid Perfluoroheptanoic acid	0.2 µg/L 0.012 µg/L 0.1 µg/L	<0.02 <0.01 <0.01	<0.02 0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.02 <0.01	<0.02 <0.01 <0.01	<0.02 0.02 <0.01	<0.02 <0.01 <0.01	Perfluoropentanoic acid Perfluorohexanoic acid Perfluorohexanoic acid	0.2 pgt 0.2 pgt 0.012 pgt 0.1 pgt 0.1 pgt	<0.02 <0.02 0.01 0.01 <0.01 <0.01	Perfluoropentanoic acid Perfluorohexanoic acid Perfluoroheptanoic acid	0.2 s 0.1 p 0.1 p	at s	0.02 <0.02 :0.01 <0.01 :0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.02 <0.01 <0.01 <0.01 <0.01
Perfluorooctanoic acid PFOA Perfluorononanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	Perfluorocctanolic acid PPOA Perfluoronoranolic acid Perfluorodo canolic acid Perfluoroundecanolic acid Perfluoroundecanolic acid	0.1 µg£ 0.1 µg£ 0.2 µg£ 0.2 µg£ 0.5 µg£	<0.01 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.01 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	Perfluoroctanoic scid PFOA Perfluoromonanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	0.1 pgt 0.1 pgt 0.2 pgt 0.2 pgt 0.5 pgt	<0.01 <0.01 <0.02 <0.02 <0.02 <0.02	Perfluorodecanoic acid Perfluoroundecanoic acid	0.1 p 0.1 p 0.2 p 0.2 p	gt s gt s	0.01 <0.01 0.02 <0.02 0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.01 <0.02 <0.02	K0.01 K0.01 K0.02 K0.02 K0.02 K0.02
Perfluorododecanole acid Parfluorotridecanole acid Perfluorotridecanole acid Perfluorotrindecanole acid 4:2 FTS	Perfuorededecanoic acid Perfuoretridecanoic acid Perfuoretridecanoic acid Perfuorete tradecanoic acid 4:2 FTS	1 pg/L 5 pg/L 0.1 pg/L	<0.1 <0.5 <0.01	x0.05 x0.1 x0.5 x0.01	<0.05 <0.1 <0.5 <0.01	<0.05 <0.1 <0.5 <0.01	<0.02 <0.05 <0.1 <0.5	<0.05 <0.1 <0.5 <0.01	k0.05 k0.1 k0.5 k0.05	<0.05 <0.1 <0.5 <0.05	Perfluorededecanoic acid Perfluoretridecanoic acid Perfluoretriadecanoic acid 4:2 FTS	5 pgt 0.1 pgt	<0.05 <0.05 <0.1 <0.1 <0.5 <0.5 <0.01 <0.01	Perfluorododecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid 4:2 FTS	5 p	gt s gt s	0.05 <0.05 0.1 <0.1 0.5 <0.5 0.01 <0.01	<0.05 <0.1 <0.5 <0.01	<0.05 <0.1 <0.5 <0.01	<0.05 <0.05 <0.1 <0.1 <0.5 <0.5 <0.01 <0.01
6:2 FTS 8:2 FTS 10:2 FTS Perfluorocotane sufforamide	6:2 FTS 8:2 FTS 10:2 FTS Perfluoroctane sulfonamide	0.1 µgt. 0.2 µgt. 0.2 µgt. 1 µgt.	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02 <0.1	<0.01 <0.02 <0.02 <0.1	<0.01 <0.02 <0.02 <0.1	<0.01 <0.01 <0.02 <0.02	<0.01 <0.02 <0.02 <0.1	<0.05 <0.1 <0.1 <0.1	<0.05 <0.04 <0.04 <0.1	6:2 FTS 8:2 FTS 90:2 FTS Perfluorocctane sulfonamide	0.072 µgt. 0.2 µgt. 0.2 µgt.	0.06 0.05 <0.02 <0.02 <0.02 <0.02 <0.1 <0.1	6:2 FTS 8:2 FTS 90:2 FTS	0.36 p 0.2 p 0.2 p	gt s gt s	0.01 <0.01 0.02 <0.02 0.02 <0.02 0.01 <0.1	<0.01 <0.02 <0.02 <0.1	<0.01 <0.02 <0.02 <0.1	(0.01 < 0.01 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.01 < 0.1 < 0.1
N-Methyl perfluorooctane sulfonamide N-Ethyl perfluorooctane.sulfonamide	N-Methyl perfluoroctane suffonamide N-Ethyl perfluoroctane suffonamide N-Ethyl perfluoroctane suffonamide	0.5 µg/L 1 µg/L	<0.05 <0.1	<0.05 <0.1	<0.05	<0.05 <0.1	<0.1 <0.05	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	N-Methyl perfluorooctane sulfonamide N-Ethyl perfluorooctanesulfonamide	1 ppt. 0.5 ppt. 1 ppt.	<0.05 <0.05 <0.1 <0.1	N-Methyl perfluorooctane aulfonamide N-Ethyl perfluorooctaneaulfonamide	0.5 p	gt ,	:0.05 <0.1 :0.1 <0.05	<0.05 <0.1	<0.05 <0.1	<0.05 <0.05 <0.1 <0.1
N-Me perfluorooctanesuffonamid cethanol N-Et perfluorooctanesuffonamid cethanol	N-Me perfluorooctanesulfonamidoethanol N-Et perfluorooctanesulfonamidoethanol	0.5 μgt. 5 μgt.		<0.05 <0.5	<0.05	<0.05 <0.5	<0.1	<0.05 <0.5	<0.05 <0.5	<0.05 <0.5	N-Me perfluorooctanesulfonamidoethanol N-Et perfluorooctanesulfonamidoethanol	0.5 pgt. 5 pgt.	<0.05 <0.05	N-Me perfluoreoctane sulfonamidoethanol N-Et perfluoreoctane sulfonamidoethanol		gt.	0.05 <0.1	<0.05	<0.05	<0.05 <0.05
Me Perfluoroctaneauf- amid caratic and ESPerfluoroctaneauf-	MePerfluorooctanesulf-amid oscetic acid EtPerfluorooctanesulf-amid oscetic acid	0.2 µg/L 0.2 µg/L	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.5 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	MePerfluorooctanesulf-amid oscetic arid EtPerfluorooctanesulf-amid oscetic	0.2 pgt. 0.2 pgt.	<0.02 <0.02 <0.02	MePerfluorooctaneaulf-amid oscetic arid EtPerfluorooctaneaulf-amid oscetic	0.2 p	gt ,	0.02 <0.05	<0.5 <0.02	<0.02	<0.5 <0.5 <0.02 <0.02
Total Positive PFIAs & PFOS Total Positive PFOA & PFOS Total Positive PFAS Arsenic-Dissolved	Total Positive PFIttS & PFOS Total Positive PFOA & PFOS Total Positive PFAS Arsenic-Dissolved	0.024 µgit. 0.1 µgit. 0.024 µgit. 2.4 µgit.	< 0.01	<0.01 <0.01 0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 0.02	<0.01 <0.01 <0.01	Total Positive PFMxS & PFOS Total Positive PFOA & PFOS Total Positive PFAS Arsenic-Dissolved	0.1 pgt 0.1 pgt 0.084 pgt 1 pgt	<0.01 <0.01 <0.01 <0.01 0.07 0.06	Total Positive PFHxS & PFOS Total Positive PFOA & PFOS Total Positive PFAS Arsenic-Dissolved	0.1 p 0.1 p 0.36 p 20.4 p	gt d	0.01 <0.02 0.01 <0.01 0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Boron-Dissolved Barium-Dissolved Beryllium-Dissolved	Boron-Dissolved Barium-Dissolved Beryllium-Dissolved	405 µg/L 240 µg/L 0.84 µg/L	<0.5	70 69 ×0.5	50 49 <0.5	70 94 <0.5	50 49 <0.5	210 54 <0.5	90 140 <0.5	50 39 <0.5	Boron-Dissolved Barium-Dissolved Bervilium-Dissolved	516 µgt. 204 µgt. 5 µgt. 0.1 µgt.	430 400 170 170 <0.5 <0.5	Boron-Dissolved Barium-Dissolved Bervillium-Dissolved	120 p 43.2 p	pt 1 pt 3 pt 4	00 90 6 36 0.5 <0.5	100 37 <0.5	100 29 <0.5	20 70 13 34 +0.5 <0.5
Cadmium-Dissolved Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved	Cadmium-Dissolved Chromium-Dissolved Copper-Dissolved Copalt-Dissolved	0.24 µg£ 1 µg£ 7.2 µg£ 20.8 µg£ 0.05 µg£	<1 5 4	<1 4 4	<1 <1 <1 16	<1 1 15	2 <1 5	<1 <1 <1 35	kl kl 7	<1 10 59	Cadmium-Dissolved Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved	0.1 pgt. 2.4 pgt. 24000 pgt. 1.2 pgt. 0.05 pgt.	2 <1 410 1300 1 <1	Cobalt-Dissolved	0.48 u 1 p 32.6 p 1.2 p	gl d gl d	(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (<1 12 2	<1 <1 <1 1	K0.1 K1 K1 1 140 3 35
Mercury-Dissolved Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	Mercury-Dissolved Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	0.05 µg£ 1440 µg£ 31.2 µg£ 165 µg£	140 9	270 9 9	<0.05 1300 2 11	×0.05 1300 8 14	<0.05 1200 <1	<0.05 2100 3 10	1100 9 25	<0.05 1300 1 72	Mercury-Dissolved Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	0.05 pgt. 4000 pgt. 20.4 pgt. 144 pgt.	<0.05 <0.05 22 33 17 17 9 10	Manganese-Dissolved Molybdenum-Dissolved	0.05 u 1092 p 6 p 33.6 u	et s et 9 et 1	0.05 ×0.05 110 850 3	<0.05 880 4 28	<0.05 890 1 3	(0.05 < 0.05 740 610 3 15 8 69
Lead-Dissolved Antimony-Dissolved Selenium-Dissolved Tin-Dissolved	Lead-Dissolved Antimony-Dissolved Selenium-Dissolved Tin-Dissolved	1 µg£ 4.8 µg£ 1 µg£ 10 µg£	<1 <1 <1	k1 k1 k1	d d d	d d	<1 <1 <1	d d d	d d d	<1 1 <1 <1	Lead-Dissolved Antimony-Dissolved Selenium-Dissolved Tin-Dissolved	1 µgL 2.4 µgL 1 µgL 10 µgL	<1 <1 2 2 <1 <1		1 p 3.6 p 1 p	gt s gt s	d d d	<1 <1 <1	41 41 41	(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
Zinc-Dissolved Iron-Dissolved Arsenic-Total	Zinc-Dissolved Iron-Dissolved Arsenic-Total	132 µg/L 4200 µg/L 14.4 µg/L	20 20	23 20 2	27 20 2	31 <10 2	13 1800	10 320 1	7 210 1	590 <10 8	Zinc-Dissolved Iron-Dissolved Arsenic-Total	112.8 µgt. 1800 µgt. 24 µgt.	16 32 <10 <10 1 2	Zinc-Dissolved Iron-Dissolved Arsenic-Total	15 p 2400 p 10.5 u	gt 8 gt 8	10 80 <10 (1 9	21 10 20	4 140 7	10 38 140 <10
Boron-Total Barium-Total Beryllium-Total Cadmium-Total	Boron-Total Barium-Total Beryllium-Total Cadmium-Total	405 µg£ 1032 µg£ 20.4 µg£ 2.04 µg£	×0.5	92 k0.5 k0.1	100 0.7 0.2	120 <0.5 0.1	130 <0.5 <0.1	230 110 <0.5 <0.1	150 <0.5 <0.1	210 2 3.4	Beron-Total Barium-Total Beryllium-Total Cadmium-Total	528 µgt. 252 µgt. 5 µgt. 0.1 µgt.	190 200 <0.5 <0.5 <0.1 <0.1	Boron-Total Barium-Total Beryllium-Total Cadmium-Total	105 p 192 p 1.2 p 0.12 u	mpt 0	80 4 160 15 0.9 0.1 0.1	220 2 0.2	83 1 <0.1	70 70 71 110 4 1 0.3 0.1
Chromium-Total Copper-Total Cobalt-Total Mercury-Total	Chromium-Total Copper-Total Cobalt-Total Mercury-Total	46.8 µg/L 372 µg/L 120 µg/L	9 8	39 13 7 <0.05	12 16 83 <0.05	19 6 16 <0.05	13 12 22 <0.05	4 10 40 <0.05	3 4 8 <0.05	28 190 160 <0.05	Chromium-Total Copper-Total Cobalt-Total Mercury-Total	19.2 µg.t. 108000 µg.t. 2.4 µg.t. 0.000 µg.t.	12 12 3400 2100 2 <1 <0.05 kp.ns		19.2 p 345 p 7.2 u 0.05 p	pt s pt s	(1 7 (1 290 (1 5 (0.05 kg) ns	17 1400 15 <0,05	3 110 7 <0.05	11 7 65 280 33 54 <0.05 <0.05
Manganese-Total Molybdenum-Total Nickel-Total Lead-Total	Manganese-Total Molybdenum-Total Nickel-Total Lead-Total	0.5 µg£. 4500 µg£. 30 µg£. 192 µg£. 204 µg£.	9 25	300 11 34	1800 2 51	1100 11 29	1400 5 21	2400 5 16	1000 8 24	1600 2 140	Manganese-Total Molybdenum-Total Nickel-Total Lead-Total	24 pgt. 117.6 pgt.	36 47 19 20 23 21	Manganese-Total Molybdenum-Total Nickel-Total	6 p	gt 9 gt 1 at 4	10 1000 3 1 26	1100 4 90	930 1 12	680 4 19 9 96
Antimony-Total Selenium-Total Tin-Total	Lead-Total Antimony-Total Selenium-Total Tin-Total	3.6 µgt. 2.4 µgt. 1.2 µgt.	d d d	k1 k1 k1	<1 <1 <1 2	<1 <1 <1 2	<1 <1 <1	41 41 41	kl kl kl	1 16		7.2 µgt. 2.4 µgt. 1 µgt. 1.2 µgt. 20.6 µgt.	c1 c1 c1 c1 c1 c1 c1 c1	Antimony-Total Selenium-Total Tin-Total	10.8 p 3.6 p 1 p 7.2 p	gt s gt s gt s	0 d d d d d	1 <1 2	d d d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Zinc-Total Iron-Total	Zinc-Total Iron-Total	1032 µgit. 91200 µgit.	46 1200	130 1600	200 12000	110 2700	89 5800	37 4600	16 1900	21000	Zinc-Total Iron-Total	99.6 µgt. 11040 µgt.	22 51 910 480	Zinc-Total Iron-Total	103.2 p 13200 p	ot 2	900 11000	22000	32 8200	130 120 22000 8700

Site				Bur	wood				
Month			Aug-24	Nov-24	Jun-23	Sep-23	Feb-24	Aug-24	Nov-24
Borehole numbers Calcium - Dissolved	Trigger values	Unit	SMW_	BH046R	22	58	SMW_8H04	82	21
Calcium - Dissolved Potassium - Dissolved Sodkam - Dissolved	42 2640	mgt.	24 1100	22	2 28	24 1100	3 20	4	4 25
Magnesium - Dissolved Hardness	324 1800	mgt. mgCsCO3	130 740	120 750	63	67 420	1 54	3 220	62
Hydroxide Alkalinity (OH-) as CaCO3 Bicarbonate Alkalinity as CaCO3	117.6 636	mgt.	<5 700	K5 810	<5 66	<5 480	<5 52	<5 68	<5 68
Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 Sulphate, SO4	50 834	mgt.	≺S 700	K5 810	45 66	480	<5 52	45 68	45 68
Chloride, Cl Ionic Balance	648 4800 10.596	mgt. mgt. %	420 1700	1700	44 +12	1900 -10	24	48	39 -10
Ammonia (as N in water) Nitrate as N in water	0.552	mgt.	0.006	0.013	< 0.005 0.63	0.38	<0.005 0.67	<0.005 0.42	0.009
Total Nitrogen in water Dichlorodifluoromethane	1.44	mgt.	1	0.3	0.6	0.6	1	0.7	1.2
Chloromethane	100	иръ	<10 <10						
Vinyl Chloride Bromomethane	10	pgt.	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10
Chloroethane Trichlorofluoromethane	100	ust. µgt.	<10 <10						
1,1-Dichloroethene Trans-1,2-dichloroethene	10	pgt.	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1
1,1-dichloroethane	10	µg/L	<1	<1	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene Bromochloromethane	10	pgt. pgt.	<1 <1	ki ki	ki ki	ki ki	<1 <1	<1 <1	kl kl
Chloroform 2,2-dichloropropane	1.2	pgt.	<1	k1	<1 <1	<1	<1 <1	<1 <1	e1
1,2-dichloroethane	10	μşt	<1	k1	<1	<1	<1	<1	<1
1,1,1-trichloroethane 1,1-dichloropropene	10	pg/L pg/L	<1 <1	k1 k1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Cyclohexane Carbon tetrachloride	10	pgt.	<1 <1	<1 <1	ki ki	<1	<1	<1 <1	<1 <1
Benzene Dibromomerhane	1 10	µgt.	<1	<1 <1	<1 <1	<1	<1	<1	<1 <1
1,2-dichloropropane	10	µg/L	<1	ci.	<1	<1	<1	<1	<1
Trichloroethene Bromodichloromethane	1	ust. µgt.	<1	<1 <1	ki ki	<1 <1	<1 <1	<1	ki ki
trans-1,3-dichloropropene cia-1,3-dichloropropene	10	ppt.	ci ci	<1 <1	<1 <1	<1	<1 <1	ki ki	<1 <1
1,1,2-trichloroethane	10	µg/L	<1	kl.	<1	<1	<1	<1	ci.
Toluene 1,3-dichloropropane	10	HOL.	41 41	41 41	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Dibromochloromethane 1,2-dibromoethane Tetrachloroethene	10 10	ppt ppt ppt	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	d d
Tetrachicroethene 1.1.1.2-istrachicroethane Chicrobenzene	10 10 10	ust ust	<1	41 41	<1 <1	<1 <1	<1 <1	<1 <1 <1	<1 <1
Ethylbenzene Bromoform	10 10	pgt.	41 41	d d	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
m+p-xylene Styrene	20 10	µgt µgt	<2 <1						
1,1,2,2-letrachloroethane o-xylene	10	pgt.	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	k1 k1
1,2,3-trichloropropane Isopropylberzene	10	ирt ирt	<1	<1 <1	<1 <1	<1	<1	<1	ki ki
Bromobenzene n-propyl benzene	10	ppt ppt	<1 <1	41 41	KI	<1	<1 <1	<1 <1	<1 <1
2-chlorotoluene	10	rot.	<1	<1 <1	<1 <1	<1	<1	<1	d
4-chlorotoluene 1,3,5-trimethyl benzene	10 10	µgt.	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	KI KI
Tert-butyl benzene 1,2,4-trimethyl benzene	10	NO.F.	<1 <1	k1 k1	ki ki	<1 <1	<1 <1	<1 <1	<1 <1
1,3-dichlorobenzene Sec-butyl benzene	10	MD.E.	<1 <1	k1 k1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,4-dichlorobenzene 4-isopropyl toluene	10	µgt.	<1	<1 <1	<1 <1	KI KI	<1	<1	KI KI
1,3-dichlorobenzene n-butyl benzene	10	pgt pgt	ci.	ci.	<1	ci.	<1	et .	KI.
1,2-dibromo-3-chloropropane 1,2-4-richlorobenzane	1 10	ppt ust	41	61 61	ki .	d	41	41	ci ci
Hexachlorobutadiene 1.2.3-trichlorobenzene	1 10	ppt ppt	<1 <1	ki ki	ki ki	<1 <1	<1 <1	<1 <1	k1 k1
TRH C6 - C9 TRH C6 - C10	100	ust.	<10 <10						
TRH C5 - C10 less BTEX (F1) Benzene	100	pgt.	<10 <1						
Toluene Ethylbenzene	10	ust. pgt.	<1 <1	k1	<1 <1	d d	<1 <1	<1 <1	k1
m+p-xylene o-xylene Nachthalene	20 10 10	ppt ppt ust	<1 <1	61 61	K1	41	<1 <1	<1 <1	<1 <1
TRH C10 - C14 TRH C15 - C28	500 516	pgt pgt	<50 <100	k50 k100	<50 <100	<50 <100	<50 110	<50 160	63 1300
TRH C29 - C36 Total +ve TRH (C10-C36) TRH >C10 - C16	1000 864 684	µgt. µgt.	<100 <50	<100 <50	<100 <50	<100 <50	<100 110	150 320	1400 2800
TRH >C10 - C16less Naphthalene (F2)	684	µgt µgt	<50 <50 <100	<50 <50 <100	<50 <50 <100	<50 <50 <100	<50 <50	<50 <50	110
TRH >C16 - C34 TRH >C34 - C40 Total +ve TRH (>C10-C40)	228 1000 912	ust ppt	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 190	<100 290	880 3300
Naphthalene Acenaphthylene	10	pgt.	<0.1 <0.1	K0.1	<0.2 <0.1	<0.1 <0.1	0.1	<0.1 0.8	0.7 <0.1
Acenaphthene Fluorene	10 10	pgt.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.2
Phenanthrene Anthracere Fluoranthene	1	ust ust ust	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	0.4	0.4	2.7
Pyrene Benzo(x)anthracene	10	ppt ppt	<0.1 <0.1	K0.1 K0.1	<0.1 <0.1	0.1	2.1	1.8	25 9.4
Chrysene Benzo(b.j+k)fluoranthene	10 20	pgt pgt	<0.1 <0.2	K0.1 K0.2	<0.1 <0.2	<0.1 0.3	1.1 4.5	1 3.8	
Benzo(alovrene Indeno(1,2,3-c,d)pyrene	1 10	ust. ygt	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.3 <0.1	3.4 2.1	2	27 14 4.9
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Benzo(a)pyrene TEQ	10 10 50	ppt ppt	<0.1 <0.1	K0.1	K0.1	0.1	2.2	3	15 38
Total +vePAH's	10	μşt	<0.1	K0.1	<0.1	1.1	22	20	
Perfluorobutanesulfonic acid Perfluoropertanesulfonic acid	0.1 0.1	pgt.	<0.01 <0.01						
Perfluorohaxaneauffonic acid - PFFtxS Perfluorohaptaneauffonic acid Perfluorooctaneauffonic acid	0.1 0.1	µg/L µg/L	<0.01 <0.01						
	0.1	pgt pgt	<0.01 <0.02						
Perfluorode canesulfonic acid Perfluorobutanoic acid Perfluoropertanoic acid	0.2	ust.	<0.02	<0.02 <0.02	< 0.02 < 0.02	<0.02 <0.02	<0.02 ×0.02	<0.02 <0.02	<0.02 <0.02
Perfluorohexanoic acid Perfluoroheptanoic acid	0.1 0.1	pgt pgt	<0.01 <0.01	K0.01	<0.01 <0.01	<0.01	< 0.01	<0.01 <0.01	<0.01 <0.01
Perfluorosctanoic acid PFGA Perfluorononanoic acid	0.1 0.1	µgt µgt	<0.01 <0.01 <0.02	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01 <0.02	<0.01 <0.01	<0.01	<0.01 <0.01
Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorododecanoic acid	0.2 0.2 0.5	ppt ppt ust	<0.02 <0.02 <0.05						
Perfluorotridecanoic acid Perfluorotetradecanoic acid	5	µgt.	<0.1 <0.5	K0.1 K0.5	k0.1 k0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	k0.1 k0.5
4:2 FTS 6:2 FTS	0.1 0.36	PQL PQL	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 0.01
8:2 FTS 10:2 FTS Perfluorooctane suffonamide	0.2 0.2	ppt ppt ust	<0.02 <0.02 <0.1						
N-Methyl perfluorcoctane suffonamide	0.5	µg/L	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
N-Ethyl perfluorocctanesuffonamide N-Me perfluorocctanesuffonamid	1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorocctanesulfonamid cethanol	0.5	µgt.	<0.05	<0.05	×0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid cethanol MePerfluorooctanesulf-	0.2	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
amid caratic arid EXPerfluoroctanesus'- amid caratic arid	0.2	ирt ирt	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02	<0.02 <0.02
amid cacatic acid Total Positive PFHxS & PFOS Total Positive PFOA & PFOS	0.1 0.1	ust	<0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.01 <0.01
Total Positive PFAS Arsenic-Dissolved	0.36 20.4	ppt ppt	<0.01 3	k0.01 k1	<0.01 <1	<0.01 1	<0.01 2	<0.01 <1	0.01 <1
Boron-Dissolved Barium-Dissolved	120 43.2 5	ppt ppt ppt	31 20.5	50 33	21	28	<20 15	50 23	30 21
Beryllium-Dissolved Cadmium-Dissolved	5 0.48	ust.	<0.5 <0.1 <1	<0.5 <0.1 <1	<0.5 <0.1	<0.5 0.1 <1	<0.5 <0.1 <1	<0.5 <0.1 2	<0.5 <0.1
Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved	32.6 1.2	pgt pgt	79 16	110	5 K1	3 <1	7	6	8 <1
Mercury-Dissolved Manganese-Dissolved	0.05 1092	ust. pgt	<0.05 290	<0.05 320	k0.05 k5	<0.05 240	<0.05 <5	<0.05 <5	<0.05 <5
Molybdenum-Dissolved Nickel-Dissolved Lead-Dissolved	5 33.6	ust.	40	4 34	2 <1	1	1 <1	3 <1	1
	1 3.6 1	ppt ppt ppt	<1 1 2	<1 <1 1	<1 <1	<1	<1 1 <1	<1 <1	ci ci
Selenium-Dissolved Tin-Dissolved Zinc-Dissolved	1.2	µgt.	<1 4	1 <1 13	<1 1	<1	<1	<1 4	<1 6
Iron-Dissolved Arsenic-Total Boron-Total	2400 10.8	ust.	<10 27	<10 8	<10 <1	2300 10	20 <1	<10 <1	20 <1
	106 192	ppt.	100 170	50 100	40 64	90 84	20 23	50 30	30 38
Beryllium-Total Cadmium-Total Chromium-Total	1.2 0.12 19.2	ust ust	3 0.2 17	0.9 <0.1	<0.5 <0.1 8	1 0.4 16	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1
Copper-Total Cobalt-Total Mercury-Total	19.2 345 7.2	ppt ppt ust	1600	310 21	17	52	4 14 <1	4 15 <1	25 1
Mercury-Total	0.05 1200 6	µgt.	<0.05 750	K0.2	×0.05 92	<0.05 320	<0.05 25	<0.05 22	k0.05
Manganese-Total	-	pgt pgt	10	4	3	3	1	4	6
Molybdenum-Total Nickel-Total	31.2	ust		70					
Manganese-Total Molybdenum-Total Nickel-Total Lead-Total Antimony-Total	31.2 10.8 3.6	ust pgt pgt	30	9	1	19	1	1	10
Manganese-Total Molybdenum-Total Nickel-Total Lead-Total	31.2 10.8	ust µst	30 1 2 <1	9 K1 1 K1	3 1 <1 <1	19 2 <1 5	3 1 <1 1	3 1 <1 1	10 1 <1 1

Site Month	Month			Feb-23	Jun-23	Sep-23	Nov-23	Feb-24	May-24	Five Dos	ck Nov-24	Sep-23	Nov-23	Feb-24	May-24	Nov-24	Sep-23
Borehole numbers Calcium - Dissolved	Borehole numbers Calcium - Dissolved	Trigger	Unit	12	co	100		BH051	16	20	26	SMW_BH051s	24		BH050s	45	SMW_BH050
Potassium - Dissolved Sodium - Dissolved Magnesium - Dissolved	Potassium - Dissolved Sodium - Dissolved Magnesium - Dissolved	92.4 24 1356 55920	mg/L mg/L	8 350	20 1100	25 1300	4 64	10 430	12 490	5.7 95	5.8 110	5.2 76	5.1 28	6.7 31	6.8	5.4 25	23 1300
Hardness Hydroxide Alkalinity (OHA) as CaCO3	Hardness Hydroxide Alkalinity (OH-) as CaCO3	500 50	mg/L mgCaCO3 mg/L	120 <5	500 <5	1300	48 <5	170 <5	190 KS	94	87 <5	130 KS	95 <5	140 <5	150 <5	120 KS	500 <s< th=""></s<>
Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3	930 50 930	mg/L mg/L mg/L	<5 70	<5 250	<5 1300	<5 54	<5 110	45 98	<s 110</s 	√S 120	45 170	√S 160	45 190	<5 270	45 190	<5 490
Sulphate, SO4 Chloride, Cl Ionic Balance	Sulphate, SO4 Chloride, CI Ionic Salance	576 2160 7.344	mg/L mg/L %	550 -5	1800 -6	2900 +13	38 86 -6	550 3	840 -8	72 -5	100 -3	24 16	14 -10	10 0	12 12 -17	14 -10	2400 -15
Ammonia (as N in water) Nitrate as N in water Total Nitrogen in water	Ammonia (as N in water) Nitrate as N in water Total Nitrogen in water	11.88 2.04 12	mg/L mg/L	0.1 0.28 0.5	0.76 1.7 6.7	0.03 0.5	0.017 2.1 2	0.082 1.4 3.1	0.38 0.58 1.5	5.8 6.4 14	0.51 0.4 1.3	0.063 0.17 0.3	<0.005 0.14 0.3	0.057 0.077 0.2	0.013 0.16 0.2	0.039 0.4 0.4	0.77 0.01 0.9
Dichlorodifluoromethane Chloromethane	Dichlorodifluoromethane Chloromethane	100	µg/L µg/L	<10 <10	6.2 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
Vinyl Chloride Bromomethane Chloroethane	Vinyl Chloride Bromomethane Chloroethane	10	pg/L pg/L us/L	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
Trichlorofluoromethane 1,1-Dichloroethene	Trichlorofluoromethane 1,1-Dichloroethene	100	µg/L µg/L	<10 <1	<10 <10	<10	<10 <10	<10	<10 <1	<10	<10 <1	<10 <1	<10 <1	<10	<10	<10 <1	<10
Trans-1,2-dichloroethene 1,1-dichloroethane	Trans-1,2-dichloroethene 1,1-dichloroethane	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<10 <1	<1	d d	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Cis-1,2-dichlorosthene Bromochloromethane Chloroform	Cis-1,2-dichloroethene Bromochloromethane Chloroform	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1	d d	<1 <1	<1 <1 <1	d d	<1 <1 <1	d d	<1 <1	d d	<1 <1
2,2-dichloropropane 1,2-dichloroethane	2,2-dichloropropane 1,2-dichloroethane	10	pg/L pg/L	<1	<1	<1	<1	<1	<1	<1	<1 -1	et.	<1 -1	<1	<1	el.	<1
1,1,1-trichloroethane 1,1-dichloropropene	1,1-trichloroethane 1,1-dichloropropene	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	d d	d d	<1 <1	d d	<1 <1	d d	<1 <1	d d	<1 <1
Cyclohexane Carbon tetrachloride Benzene	Cyclohexane Carbon tetrachloride Benzene	1 1	µg/L µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	d d	<1 <1	<1	el el	<1 <1	41 41	<1 <1	el el	<1 <1
Dibromomethane 1,2-dichloropropane	Dibromomethane	10	µg/L µg/L	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	el.	<1 <1	d d	<1	el el	ki .
Trichloroethene Bromodichloromethane	Trichloroethene Bromodichloromethane	٠.	ua/L µg/L	<1 <1	<1 <1	<1 <1	k1 k1	<1	kl kl	<1	<1	ki ki	<1 <1	d d	<1	<1	<1
trans-1,3-dichloropropene cis-1,3-dichloropropene	trans-1,3-dichloropropene cis-1,3-dichloropropene	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	kl kl	<1 <1	<1 <1	<1 <1	kl kl	<1
1,1,2-trichloroethane Toluene 1,3-dichloropropane	1,1,2-trichloroethane Tolsene 1,3-cichloropropane	10	µg/L µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	el el	<1 <1	<1 <1	el el	<1 <1	<1 <1	<1 <1	el el	<1
Disconsistence of the control of the	Ditromochloromethans 1,2-ditromoethans Tetrachloroethens	10	pg/L pg/L pg/L	ki ki	<1 <1	k1 k1	d d	<1 <1	k1 k1	ci ci	d d	d d	<1 <1 <1	d d	<1 <1	41 41	<1 <1
Tetrachloroethene 1.1.1.2-letrachloroethane Chloroberzene Ethylbenzene	Tetrachloroethene 1.1.1.3-tetrachloroethene Chlorobenzene Ethylbenzene	10 10 10	ua/L µg/L	KI KI	<1 <1	k1 k1	k1 k1	<1 <1	KI KI	<1 <1	d d	d d	<1 <1	d d	<1 <1	el el	<1 <1
Bromoform m+p-xylene	Bromoform m+p-xylene	10 10 20 10	pg/L pg/L pg/L	<1 <2	<1 <1 <1 <2	<1 <2	ci ci	<1 <2	<1 <2	d 2	d d	d d	<1 <2	c1 c2	<1 <2	k1 k2 k1	k1 k2
1,1,2,2-tetrachloroethase o-xylene	Styrens 1,1,2,2-tetrachloroethans o-xylens	10	pg/L pg/L pg/L	<1 <1	<1 <1	<1 <1	<2 <1	<1 <1	<1 <1 <1	<1 <1	d d	41 41	<1 <1	<1 <1	<1	<1 <1	<1 <1
1,2,3-trichloropropane Isopropylbenzene	1,2,3-trichloropropane Isopropy/benzene	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	et et	<1 <1	ki ki	<1 <1	el el	<1
Bromobenzene n-propyl benzene 2-chlorotolsene	Bromoberzene n-propyl berzene 2-chlorotoluene	10	pg/L pg/L pg/L	ki ki ki	<1 <1	K1 K1	41 41	<1 <1	k1 k1 k1	<1 <1	d d	<1 <1	<1 <1	41 41	<1	<1 <1	<1 <1
4-chlorotolsene 1,3,5-trimethyl benzene	4-chlorotoluene 1,3,5-trimethyl benzene	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	d d	K1 K1	<1 <1	d d	kl kl	<1 <1	ci ci	<1 <1	el el	<1 <1
Tert-butyl benzene 1,2,4-trimethyl benzene 1,3-di-bloochenmene	Tert-butyl benzene 1,2,4-trimethyl benzene 1,3-dichlorobenzene	10	pg/L pg/L	<1 <1	<1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	d d	<1	d d	<1 <1	d d	<1 <1
Sec-butyl benzene 1,4-dichlorobenzene	Sec-butyl benzene 1,4-dichlorobenzene	10	pg/L pg/L	<1 <1	<1	<1	<1 <1	<1	d d	<1 <1	<1	el el	<1	d d	<1	el el	<1 <1
4-isopropyl toluene 1,2-dichlorobenzene	4-isopropyl toluene 1,2-dichlorobenzene	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	d d	<1 <1	ki ki	<1 <1	d d	<1 <1
n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-richlorobenzene Hexachlorobutadiene	n-butyl benzene 1,2-dibromo-3-chloropropane 1,2-4-trichlorobenzene Hexachlorobutadiene	10 10	pg/L pg/L uo/L	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	<1 <1 <1	<1 <1	41 41	<1 <1 <1	<1 <1	<1 <1 <1	41 41	<1 <1 <1
1,2,3-trichlorobenzene TRH C6 - C9	Hexachlorobutadiene 1,2,3-trichlorobenzene TRH C6 - C9	1 10 100	pg/L pg/L pg/L	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	k1 k1 k10	<1 <1 <10
TRH C6 - C10 TRH C6 - C10 lessBTEX (#1) Benzene	TRH C6 - C10 TRH C6 - C10 lexaBTEX (F1) Benzene	45 45	ua/L pg/L pg/L	<10 <10 <1	<10 <10 <1	<10 <10 <1	<1 <10 <10	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10
Toluene Ethylbenzene m+p-xylene	Toluene Ethylberzene m+p-xylene	10 10 20	ug/L ug/L ug/L	<1 <1 <2	<1 <1 <2	<1 <1 <2	<10 <1 <1	<1 <1 <2	c1 c1 c2	<1 <1 <2	<1 <1 <2	<1 <1 <2	<1 <1 <2	<1 <1 <2	<1 <1 <2	<1 <1 <2	<1 <1 <2
o-xylene Nachthalene TRH C10 - C14	o-xylene Nachthalene TRH C10 - C14	10 10 500	pg/L us/L pg/L	<1 <1 <50	<1 <1 <50	<1 <1 <50	<1 <2 <1	<1 <1 <50	k1 k1 k50	<1 <1 <50	<1 <1 <50	<1 <1 <50	<1 <1 <50	<1 <1 <50	<1 <1 <50	<1 <1 54	<1 <1 <50
TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C19-C36)	TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36)	156 1000 156	pg/L pg/L pg/L	<100 <100 <50	130 <100 130	<100 <100 <50	<1 <50 <100	<100 <100 <50	130 100 240	<100 <100 <50	250 140 390	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	380 350 790	<100 <100 <50
TRH >C10 - C16 TRH >C10 - C16less Naphthalene (F2) TRH >C16 - C34	TRH > C10 - C16 TRH > C10 - C16leax Naphthalene (F2) TRH > C16 - C34	500 500 216	pg/L pg/L uo/L	<50 <50 <100	<50 <50 180	<50 <50 <100	<50 <50	<50 <50 110	<50 <50 210	<50 <50 <100	<50 <50 340	<50 <50 <100	<50 <50 <100	<50 <50 <100	<50 <50 <100	72 72 640	<50 <50 130
TRH >C34 - C40 Total +ve TRH (>C10-C40) Naphthalene	TRH >C34 - C40 Total +ve TRH (>C10-C40) Naphthalene	1000 216 10	pg/L pg/L	<50 <50 <0.2	<100 180 <0.2	<50 <0.1	<50 <100 <0.1	<100 110 <0.1	<100 210 <0.1	<100 <50 <0.1	<100 340 <0.1	<50 <0.1	<50 <50 <0.1	<50 <50 <0.1	<100 <50 <0.1	120 830 <0.1	<100 130 <0.1
Acenaphthylene Acenaphthene Fluorene	Acensphthylene Acensphthene Fluorene	10 10 10	pg/L pg/L pg/L	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Phonanthrone Anthrocene Fluoranthone	Phenanthrene Anthracene Plucranthene	1 1	uo/L µg/L µg/L	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Pyrene Benzo(a)anthracene Chrysene	Pyrene Benzo(s)anthracene Chrysene	10	pg/L pg/L pg/L	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	K0.1 K0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Benzo(b.j-k)fluoranthene Benzo(s/ovrene Indeno(1,2,3-c,d)pyrene	Benzo(b_j=k)fluoranthene Benzo(akovrene Indeno(1,2,3-c,d)pyrene	1 10	pg/L ua/L pg/L	<0.2 <0.1 <0.1	<0.2 <0.2 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.1 <0.1	<0.2 <0.1 <0.1	<0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1
Dibenzo(a,h)anthracene Benzo(g,h,l)perylene Benzo(a)pyrene TEQ	Dibenzo(s,h)perthracene Benzo(g,h,l)perylene Benzo(s)pyrene TEQ	10 10 50	pg/L pg/L pg/L	<0.1 <0.1 <0.5	<0.1 <0.1 <0.1	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5
Total +vePAH's Perfluorobutanesuffonic acid Perfluoropentanesuffonic acid	Total +vePAH's Perfluorobutanesulfonic acid Perfluoropentanesulfonic acid	10 0.036 0.1	pg/L pg/L pg/L	<0.1 <0.01	<0.5 <0.1 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 <0.01 <0.01	<0.1 <0.01	<0.1 <0.01 <0.01	<0.1 <0.01 <0.01	<0.1 <0.01	<0.1 <0.01 <0.01	<0.1 <0.01	<0.1 <0.01 <0.01	<0.1 <0.01	<0.1 <0.01 <0.01
Perfluorohexanesuffonic acid - PFHxS Perfluorohexanesuffonic acid	Perfluorohexanesuffonic acid - PFHzS Perfluorohexanesuffonic acid	0.048	pg/L pg/L	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Perfluorocctanesulfonic acid PFOS Perfluorodecanesulfonic acid	Perfluorocctanesuffonic acid PFOS Perfluorodecanesuffonic acid	0.024	µg/L µg/L	<0.01 <0.02	<0.01	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.01	<0.01	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01
Perfluorobutanoic acid Perfluorobertanoic acid Perfluorobertanoic acid Perfluorobertanoic acid	Perfluorobutanoic acid Perfluoropentanoic acid Perfluorobexanoic acid Perfluorobexanoic acid	0.2 0.168 0.18	ua/L ua/L ua/L	<0.02 <0.01	<0.01 <0.02 <0.02	<0.02 <0.02 <0.01	<0.02 <0.01	<0.02 <0.02 0.03	<0.02 <0.01	<0.02 <0.01	<0.02 <0.02 0.01	<0.01 <0.02	<0.02 <0.02 0.01	0.02	<0.02 <0.02 0.01	<0.02 <0.01	<0.02 <0.02 <0.01
Perfluoroheptanoic acid Perfluoroctanoic acid PPGA Perfluorononanoic acid Datinostanoic acid	Perfluorobeptanoic acid Perfluorobetanoic acid PFOA Perfluoromenanoic acid	0.036 0.06 0.1	pg/L pg/L pg/L	<0.01 <0.01	<0.02 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.02 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.01 <0.01	<0.01 <0.01 <0.01
Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorodecanoic acid Perfluorotificoanoic acid	Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorododecanoic acid Perfluoroticidecanoic acid	0.2 0.2 0.5	pg/L pg/L us/L	<0.02 <0.05	<0.01 <0.01 <0.02	K0.02 K0.05	<0.02 <0.05	<0.02 <0.02 <0.05	K0.02 K0.05	<0.02 <0.05	<0.02 <0.02 <0.05	<0.01 <0.01 ×0.02	<0.02 <0.02 <0.05	<0.02 <0.05	<0.02 <0.02 <0.05	<0.02 <0.05	<0.02 <0.02 <0.05
Perfluorotridecanoic acid Perfluorotretradecanoic acid 4:2 FTS 6:2 FTS	Perfluorotridecanoic acid Perfluorotetradecanoic acid 4:2 FTS 6:2 FTS	5 0.1	pg/L pg/L pg/L	K0.5 K0.01	<0.02 <0.05 <0.1	K0.5 K0.01	<0.1 <0.5 <0.01	<0.1 <0.5 <0.01	K0.1 K0.5 K0.01	<0.1 <0.5 <0.01	<0.1 <0.5 <0.01	<0.02 <0.05	<0.1 <0.5 <0.01	<0.5 <0.01	<0.1 <0.5 <0.01	<0.5 <0.01	<0.1 <0.5 <0.01
6:2 FTS 8:2 FTS 10:2 FTS Perfluorooctane sulfonamide	8:2 FTS 10:2 FTS	0.156 0.2 0.2	pg/L pg/L pg/L	K0.02	<0.5 <0.01 <0.01	K0.02 K0.02	<0.02 <0.02	<0.01 <0.02 <0.02 <0.1	K0.02 K0.02	<0.02 <0.02	<0.01 <0.02 <0.02 <0.1	k0.5 k0.01	<0.02 <0.02	<0.02 <0.02	<0.01 <0.02 <0.02 <0.1	<0.02 <0.02	<0.01 <0.02 <0.02 <0.1
Perfluoroctane suffonamide N-Methyl perfluoroctane suffonamide N-Ethyl perfluoroctanesuffonamide	Perfluoroctane sulforamide N-Methyl perfluoroctane sulfonamide N-Ethyl perfluoroctanesulfonamide	0.5	uo/L µg/L	<0.05	<0.02	<0.05	<0.05	<0.05	KU.1 KU.05	<0.05	<0.05	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesuffonamid N-Me perfluorooctanesuffonamid oethanol	N-Ethyl perfluorocctanesulfonamide N-Me perfluorocctanesulfonamidoethanol	0.5	µg/L	×0.1 ×0.05	<0.1	×0.1	<0.1 <0.05	<0.1 <0.05	×0.1	×0.1	<0.1	<0.02 <0.1	<0.05	×0.1 ×0.05	<0.1	<0.1 <0.05	<0.1
N-Et perfluorooctane suffonamid cethanol	N-Et perfluorooctanesulforamidoethanol	5	pg/L	×0.5	<0.1	K0.5	<0.5	<0.5	K0.5	<0.5	<0.5	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oursile and EXPerfluorooctanesulf- amid oursile and	MePerfluorooctanesulf-amid oscetic acid EtPerfluorooctanesulf-amid oscetic acid	0.2	µg/L µg/L	<0.02 <0.02	<0.05	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	×0.02 ×0.02	<0.02 <0.02	<0.02 <0.02	<0.1 <0.05	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
Total Positive PFHxS & PFOS Total Positive PFOA & PFOS Total Positive PFAS	Total Positive PFIALS & PFOS Total Positive PFOA & PFOS Total Positive PFAS	0.1 0.1 0.552	ua/L pg/L pg/L	<0.01 <0.01 <0.01	<0.02 <0.02 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 0.02	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 0.01	K0.5 K0.02 K0.02	<0.01 <0.01 0.03	<0.01 <0.01 0.1	<0.01 <0.01 0.01	<0.01 0.01 0.01	<0.01 <0.01 <0.01
Arsenic-Dissolved Boron-Dissolved Barium-Dissolved	Arsenic-Dissolved Boron-Dissolved Barium-Dissolved	3.6 72 82.8	pg/L pg/L pg/L	K1 30 12	1 60 69	70 120	20 12	1 30 18	k1 30 22	k1 50 28	<1 50 32	K1 70 350	100 310	1 100 440	<1 70 370	K1 80 370	3 60 81
Bervllium-Dissolved Cadmium-Dissolved Chromium-Dissolved	Bervilium-Dissolved Cadmium-Dissolved Chromium-Dissolved	5 0.12 1	ug/L ug/L ug/L	k0.5 0.1 k1	<0.5 <0.1 <1	K0.5 K0.1 K1	k0.5 k0.1 k1	<0.5 <0.1 <1	k0.5 k0.1 k1	<0.5 <0.1 <1	<0.5 <0.1 <1	<0.5 <0.1 <1	<0.5 <0.1 <1	<0.5 <0.1 <1	<0.5 <0.1 <1	k0.5 k0.1 k1	<0.5 <0.1 <1
Copper-Dissolved Cobalt-Dissolved Mercury-Dissolved	Copper-Dissolved Cobalt-Dissolved Mercury-Dissolved	13.2 156 0.05	pg/L pg/L uo/L	7 39 ×0.05	<1 120 <0.05	k1 2 k0.05	12 5 <0.05	13 61 <0.05	10 76 ×0.05	2 <0.05	12 5 <0.05	<1 1 <0.05	1 <1 <0.05	<1 <1 <0.05	<1 <0.05	2 <1 <0.05	<1 140 <0.05
Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	52800 3.6 312	pg/L pg/L uo/L	17000 1 31	44000 3 100	250 4 2	1800 5	18000 1 36	31000 <1 44	680 1 3	1700 5	120 1 2	9 <1 1	1 2	6 <1 <1	22 <1 1	50000 3 110
Lead-Dissolved Antimony-Dissolved Selenium-Dissolved	Lead-Dissolved Antimony-Dissolved Selenium-Dissolved	1.2	pg/L pg/L pg/L	ki ki ki	<1 <1 <1	k1 k1 k1	(1 (1 (1	<1 <1 <1	ki ki ki	<1 <1 <1	(1 1 (1	त त त	<1 <1 <1	41 41 41	<1 <1 <1	kl kl kl	<1 <1 <1
Tin-Dissolved Zinc-Dissolved Iron-Dissolved	Tin-Dissolved Zinc-Dissolved Iron-Dissolved	10 288 1440	pg/L pg/L pg/L	<1 200 30	<1 82 700	k1 3 1200	<1 49 10	<1 100 20	<1 130 80	<1 33 50	<1 91 30	<1 19 220	<1 12 <10	<1 12 <10	<1 12 <10	<1 32 <10	<1 33 6500
Arsenic-Total Boron-Total Barium-Total	Arsenic-Total Boron-Total Barium-Total	10.8 84 276	ug/L ug/L ug/L	1 40 26	9 60 230	170 100 1900	<1 <20 19	1 50 42	<1 50 38	<1 80 31	<1 70 35	21 100 1400	5 90 510	3 100 470	2 100 530	3 90 590	100 1100
Beryllium-Total Cadmium-Total Chromium-Total	Beryllium-Total Cadmium-Total Chromium-Total	3.6 1.8 60	pg/L us/L pg/L	K0.5 0.3 4	3 1.5 50	21 2 380	<0.5 <0.1 3	<0.5 0.1 8	K0.5 0.2 3	<0.5 <0.1 2	<0.5 <0.1 <1	0.6 24	0.9 <0.1	<0.5 <0.1 4	<0.5 <0.1 3	0.7 <0.1 5	15 8.2 250
Copper-Total Cobalt-Total Mercury-Total	Copper-Total Cobalt-Total Mercury-Total	240 300 0.026	pg/L us/L pg/L	34 60 ×0,05	200 250 0.08	390 140 ×0,05	20 10 ×0.05	25 79 <0.05	15 160 ×0.05	20 14 <0.05	13 10 <0.05	120 10 <0.05	27 2 <0.05	5 1 K0.05	8 <1 <0.05	26 2 <0.05	1100 1000 <0.05
Manganese-Total Molybdenum-Total Nickel-Total	Manganese-Total Molybdenum-Total Nickel-Total	84000 4.8 372	pg/L pg/L us/L	21000 2 47	70000 4 190	5000 17 160	3900 2 9	30000 1 46	57000 <1 90	5100 1 11	3300 1 8	310 3 17	110 1 3	7S 1 7	1 3	89 <1 3	190000 10 790
Lead-Total Antimony-Total Selenium-Total	Antimony-Total Selenium-Total	57.6 2.4 1	pg/L pg/L pg/L	9 1 <1	48 2 <1	190	2 1 <1	6 <1 <1	3 <1 <1	(1 (1	1 41	99 2 4	13 1 <1	6 1 <1	6 <1 <1	13 1 <1	260 5 3
Tin-Total Zinc-Total Iron-Total	Tin-Total Zinc-Total Iron-Total	8.4 996 15600	µg/L	<1 340 880	7 830 13000	7	2 67 840	1 120 1900	×1 210 1600	<1 63 640	<1 93 1000	2 1200 84000	1 84 19000	<1 29 7900	<1 48 8500	<1 78 15000	13 3800 65000
au-roul	aron-rocal		April .						- mod		, most			- cod		-000	

Site Month	Month		Mar-23	Apr-23 May-23			Feb-24 Au	g-24 Nov-	-24 Ma			-23 Mar-23	Apr-23 May-23	B Aug-23			May-24	Aug-24	Nov-24	Mar-23	Apr-23 May-			Feb-24	Aug-24	Mar-23			
Borehole numbers Calcium - Dissolved Potssalum - Dissolved	Borehole numbers Calcium - Dissolved Potassium - Dissolved	Trigger Unit values 581.6 mall. 54 mg/L 3120 mg/L	160 24	27 37 5 6	60 7.1	MW_BH035s 46 9.2	34 13 9.8 5	22 6.6	220 18	SMW 45	250 17	65 5	270 37 19 3	55 4	150 8.4	8H009S 190 8.6	27	76 6.7	45 5	34 4	410 390 40 40	SMW_ 410 39	8H035 470 43	470 47	480 43	230 2	280 2 4 3	4W_B H038 50 98 22	240 6.7
Sodkam - Dissolved Magnesium - Dissolved Hardness Hydroxide Alkalinity (OH-) as CaCO3	Sodium - Dissolved Magnesium - Dissolved Hardness Hydroxide Alkalinity (OH-) as CsCO3	7308 mg/L 2520 mgCaCO2	1000	340 450 12 22 120 180	770 35 290	740 55 340	600 440 50 15 290 93	550 29 180	220 ×0.5 550	99 13 170	×0.5 610	20 250	190 87 k0.5 10 670 130	100 16 200	180 39 540	170 48 670	66 8.1 100	140 22 280	85 11 160	340 12 130	1700 2300 260 260 2100 2000	2500 310 2300	2700 340 2600	2600 360 2700	1900 340 2600 <s< th=""><th>58 5 <0.5 4 580 7</th><th>95 1 <0.5 < 710 6</th><th>0 120 0 170 10 96</th><th>0 340 0 <0.5 0 590</th></s<>	58 5 <0.5 4 580 7	95 1 <0.5 < 710 6	0 120 0 170 10 96	0 340 0 <0.5 0 590
Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3	778.8 mg/L 74.4 mg/L 840 mg/L	500 KS 500	94 100 <5 <5 94 100	85 KS 85	50 kS 50	19 61 <5 <5 19 61	36 KS 36	<5 59 670	240 <s 240</s 	57 57	280 kS 280	<5 210 60 <5 600 210	200 <s 200</s 	130 KS 130	81 <5 81	70 <s 70</s 	110 <s 110</s 	120 <5 120	150 kS 150	560 600 <5 <5 560 600	660 KS 660	650 KS 650	670 KS 670	600 KS 600	<5 × 62 5 290 4	<5 < 59 4	i 370 i <5	33 3 240
Sulphate, SO4 Chloride, CI Ionic Balance Ammonia (as N in water)	Sulphate, SO4 Chloride, CI Ionic Balance Ammonia (as N in water)	600 mg/L 6945 mg/L 8.4 % 1.65 mg/L	2400 -2	230 310 360 610 2 -4 0.066 0.096	1100 -5 0.17	1100 -6 0.15	480 350 920 390 -6 4 0.18 0.065	730 -5 0.18	17 280 -1 0.86	90 -5 <0.	290 0 .005 0.91	91 180 -1 0.043	24 57 310 66 2 -4 0.69 0.036	91 78 3 0.027	130 2 0.073	73 5 0.12	150 52 -9 0.12	210 170 2 0.071	140 81 -4 0.085	390 -4 0.071	32 22 4100 4000 -4 7 0.93 1.4	13 6100 -8	17 5300 2	11 4600 8	4400 -1 1.4	280 2 92 1 0 0 0.074 -	260 2 170 1 <0.005 0	0 230 0 210 1 007 2	260 0 480 6 <0.005
Nitrate as N in water Total Nitrogen in water Dichlorodifluoromethane	Nitrate as N in water Total Nitrogen in water Dichlorodifluoromethane	2.4 mg/L 3.6 mg/L 100 μg/L	1.4	0.072 0.13 0.3 0.5 <10 <10	0.01 0.7 <10	0.01 1.3 <10	0.01 0.02 0.5 0.4 <10 <10	0.007 0.5 <10	1.1 2.5 <10	0.00 0.1 <10	2 0.82 3 0 <10	0.04 0.4 <10	1.5 0.02 3 0.2 <10 <10	0.01 0.1 <10	0.44 1.4 <10	0.14 0.4 <10	0.3 0.7 <10	0.11 0.7 <10	0.008 0.3 <10	0.02 0.2 <10	0.89 2 2.2 2.5 <10 <10	0.87 3.9 <10	2.8 5.1 <10	2.7 5.2 <10	2.6 4.4 <10	0.53 0 0.7 1 <10 -	0.74 0 1 1 <10 <	.51 0.1 2.7 10 <1	9 0.32 1.4 0 <10
Chloromethane Vinyl Chloride Bronnomethane	Chloromethane Vinyl Chloride Bromomethane	100 μg/L 10 μg/L 10 μg/L	<10	<10 <10 <10 <10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10 <10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10	0 <10 0 <10 0 <10	<10 <10 <10	<10 <10 <10 <10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10 <10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 - <10 - <10 -	<10 < <10 < <10 <	10 <1 10 <1 10 <7	0 <10 0 <10 0 <10
Chloroethane Trichlorofluoroethane 1,1-Dichloroethane	Chloroethane Trichloroffuoromethane 1,1-Dichloroethene	100 ua/L 100 µg/L 10 µg/L	<10 <10	<10 <10 <10 <10 <1 <1	<10 <10 <1	<10 <10 <1	<10 <10 <10 <10 <1 <1	<10 <10	<10 <10	<10 <10	0 <10 0 <10 <1	<10 <10	<10 <10 <10 <10	<10 <10 <1	<10 <10 <1	<10 <10	<10 <10	<10 <10 <1	<10 <10 <1	<10 <10 <1	<10 <10 <10 <10 <1 <1	<10 <10	<10 <10	<10 <10	<10 <10 <1	<10 - <10 -	<10 < <10 <	0 <1 10 <1 1 <1	0 <10 0 <10 <1
Trans-1,2-dichloroethene 1,1-dichloroethene Cla-1,2-dichloroethene	Trans-1,2-dichloroethene 1,1-dichloroethene Cis-1,2-dichloroethene	10 µg/L 10 µg/L 10 µg/L	<1 <1	d d d d	<1 <1 <1	<1 <1 <1	d d d d	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	<1 <1	d d	d d	<1 <1 <1	<1 <1 <1	<1 <1	d d	<1 <1 <1	ki ki	<1 <1 <1 <1 <1 <1 <1 <1	d d	d d	<1 <1 <1	d d	<1 -	<1 <	1 <1	<1 <1 <1
Bromochloromethane Chloroform 2,3-dichloropropane	Bromochloromethane Chloroform 2,2-dichloropropane	10 µg/L 10 µg/L 10 µg/L	<1	d d d d d d	d d	d d d	d d d d	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	d d d d	d d	<1 <1 <1	d d	d d	d d d	<1 <1 <1	<1 <1 <1	<1 <1 <1 <1 <1 <1	d d	d d	d d	d d	<1 - 4 <1 - 4	<1 < <1 <	1 <1	<1 <1 <1
1,2-dichloroethane 1,1,1-trichloroethane	1,2-dichloroethane 1,1,1-trichloroethane	10 µg/L 10 µg/L	<1	d d	d d	ci ci	d d	d d	ki ki	<1	<1 <1	d d	d d	ci ci	<1	el el	<1	d d	<1 <1	ki ki	d d	<1	d	d d	d d	<1 -	d d	1 <1	<1
1,1-dichloropropene Cyclohexane Carbon setrachloride Benzene	1,1-dichloropropene Cyclohexane Carbon tetrachloride Benzene	10 μg/L 10 μg/L 1 μg/L 1 μg/L	<1 <1	d d d d	d d	d d	d d	k1 k1	ki ki	d d	<1 <1	d d	d d	d	d d	ci ci	ki ki	d d	d d	ki ki	d d d d	d	d d	d d	d d	<1 ·	d d	1 4	<1 <1
Dibromorethane	Dibromomethane 1,2-dichloropropane	10 μg/L 10 μg/L	<1	ते ते त त	d	d d	त त त त	d	d d	<1	<1 <1	d	त त	d	<d <<="" th=""><th>d d</th><th>d</th><th>d</th><th><i <1</i </th><th>d d</th><th>d d</th><th>d</th><th>d</th><th>d</th><th>d d</th><th>d -</th><th>d d</th><th>1 <1</th><th><1 <1</th></d>	d d	d	d	<i <1</i 	d d	d d	d	d	d	d d	d -	d d	1 <1	<1 <1
Trichloroethene Bromodichloromethane trans-1,2-dichloropropene	Trichloroethene Bromodichloromethane trans-1,3-dichloropropene	1 иа/L 1 иа/L 10 иа/L	<1 <1	d d d d	d d	<1 <1 <1	d d d d	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	41 41	d d	d d	<1 <1 <1	<1 <1	<1 <1	d d	<1 <1 <1	<1 <1 <1	<1 <1 <1 <1 <1 <1	<1 <1 <2	d d	d d	d d	<1 - <1 -	<1 < <1 <	1 <1	<1 <1 <1
cis-1,3-dichlorogropene 1,1,2-trichloroethane Tolusne	cis-1,3-dichloropropene 1,1,2-trichloroethane Toluene	10 µg/L 10 µg/L 10 µg/L	<1	d d d d	d d	d d	d d d d	<1 <1 <1	<1 <1 <1	<1 <1	<1 <1 <1	41 41	d d	d d	<1 <1 <1	d d	d d	d d	<1 <1 <1	ki ki	<1 <1 <1 <1 <1 <1	d d	d d	d d	0 0	<1 -	<1 <	1 <1	<1 <1 <1
1,3-dichloropropane Dibromochloromethane 1,2-dibromoethane	1,3-dichloropropane Dibromochloromethane 1,2-dibromoethane	10 μg/L 10 μg/L 10 μg/L	d d	d d d d	d d	(1 (1	d d d d	(1 (1 (1	(1 (1 (1	<1 <1 <1	<1 <1 <1	d d	d d	d d	<1 <1	d d	d d	d d	41 41 41	ci ci	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	d d	d d	d d	d d	<1 4 <1 4 <1 4	<1 <	<1 <1 1 <1	<1 <1 <1
Tetrachloroethene 1.1.1.2-tetrachloroethene Chlorobenzene Ethylbenzene	Tetrachicroethene 1.1.1.2-tetrachicroethane Chicrobenzene Ethylbenzene	10 µg/L 10 us/L 10 µg/L 10 µg/L 10 µg/L	K1	d d d d d d	41 41 41	61 61 61	41 41 41 41 41 41	41 41 41	k1 k1 k1	<1 <1 <1 <1	<1 <1 <1 <1	41 41 41	41 41 41 41 41 41	k1 k1 k1	<1 <1 <1	61 61 61	41 41 41	d d d	<1 <1 <1	ki ki ki	4 d d d d d	d d d	d d	41 41 41	d d d	<1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	d 6	K1 K1 K1	<1 <1 <1 <1
Bromoform m+p-xylene Styrene 1,1,2,2-tetrachloroethane	Bromoform m+p-xylene Styrene 1,1,2,2-tetrachloroethane	10 µg/L 20 µg/L 10 µg/L 10 µg/L	k2 k1	G G G G G G G G G G G G G G G G G G G	61 62 61	k1 k2 k1 k1	6 d 42 d 4 d 4 d	61 62 61	K1 K2 K1 K1	<1 <2 <1 <1	<1 <2 <1 <1	41 42 41	d d d d d d	<1 <2 <1 <1	<1 <2 <1 <1	<1 <2 <1 <1	<1 <2 <1 <1	41 41 41	<1 <2 <1 <1	k1 k2 k1 k1	0 d 0 0 d d d d	<1 <1 <2 <1	42 41 41	41 41 41	d d d	<1 - 42 - 41 - 41 - 41 - 41 - 41 - 41 - 4	d (d	K1 K2 K1 K1	<1 <2 <1 <1
0-xylene 1,2,3-trichloropropane laopropylberzene	0-sylene 1,2,3-trichloropropane Isopropylbenzene	10 μg/L 10 μg/L 10 μg/L	<1 <1	d d d d	<1 <1	<1 <1 <1	<1 <1 <1 <1 <1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1	<1 <1	<1 <1 <1	<1 <1	d d	<1 <1 <1	ci ci	d d d d	d d	d d	<1 <1	d d	d d	d d	d d	<1 <1 <1
Bromobenzene n-propyl benzene 2-chlorobluene	Bromoberzene Bromoberzene n-propyl berzene 2-chforotoluene	10 µg/L 10 µg/L 10 µg/L	<1 <1	d d d d	d d	d d	d d	d d	ki ki	<1 <1	<1 <1	d d	d d	d d	<1 <1 <1	d d	d d	d d	<1 <1 <1	ki ki	d d d d	d	d d	d d	d d	d -	d d	1 <1	<1 <1
4-chloroblume 1,3,5-timethyl benzene Terl-butyl benzene	4-chforotoluene 1,3,5-trimethyl benzene Tert-butyl benzene	10 µg/L 10 µg/L 10 µg/L	<1 <1	d d d d d d	d d	<1 <1 <1	d d d d d d	41 41 41	d d	<1 <1	<1 <1 <1	d d	d d d d	d d	<1 <1 <1	d d	d d	d d d	<1 <1 <1	d d	d d d d	d d	d d	d d	d d	<1 -	d d	<1 <1 1 <1	<1 <1 <1
1,2,4-trimethyl benzene 1,3-dichlorobenzene Sec-butyl benzene	1,2,4-trimethyl benzene 1,3-dichlorobenzene Sec-butyl benzene	10 µg/L 10 µg/L 10 µg/L	<1 <1	d d d d d d	d d	d d	d d d d d d	<1 <1 <1	(1 (1 (1	<1 <1 <1	<1 <1 <1	<1 <1	(1 (1 (1 (1 (1 (1	d d	<1 <1 <1	(1 (1	<1 <1	d d	<1 <1 <1	ki ki	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1	d d	d d	d d	d d d	<1 -	d d	1 <1	<1 <1 <1
1,4-dichlorobenzene 4-isopropyl toluene 1,2-dichlorobenzene	1,4-dichlorobenzene 4-isopropyl tolsene 1,2-dichlorobenzene	10 μg/L 10 μg/L 10 μg/L	<1	d d d d	d d	d d	d d d d	<1 <1	ki ki	<1 <1	<1 <1 <1	d d	d d	d d	<1 <1	<1 <1	<1 <1	d d	<1 <1 <1	ki ki	d d d d	d d	d d	d d	d d	<1 -	d (1 <1	<1 <1 <1
n-butyl benzene 1,2-dibrono-3-chloropropane 1,2-4-trichlorobenzene	n-butyl benzene 1,3-dibromo-3-chloropropane 1,2-4-trichlorobenzene	10 μg/L 1 μg/L 10 μα/L	<1 <1	d d d d	d d	<1 <1 <1	d d d d	41 41 41	d d	<1 <1	<1 <1 <1	41 41	d d d d	d d	<1 <1 <1	61 61 61	d d	d d	<1 <1 <1	d d	d d d d	d d	d d	d d	d d	<1 -	d d	<1 1 <1 1 <	<1 <1 <1
Hexachlorobutadiene 1,2,3-irichlorobenzene TRH C6 - C9 TRH C6 - C10	Hexachlorobutadiene 1,2,3-trichlorobenzene TRH C6 - C9 TRH C6 - C10	1 µg/L 10 µg/L 100 µg/L 100 µg/L	<10	<1 <1 <1 <1 <1 <10 <10 <10 <10	<1 <1 <2 <10	<1 <1 <10	<1 <1 <1 <1 <1 <10 <10 <10	<1 <1 <10	k1 k1 k10	<1 <1 <10	<1 <1 0 <10	<1 <1 <10	<1 <1 <1 <1 <1 <10 <10 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 <1 <10	k1 k1 k10	<1 <1 <1 <1 <1 <10 <10 <10	<1 <1 <1	<1 <1 <10	<1 <1 <10	<1 <1 <10	<1 - <1 - <10 -	<1 < <1 < <10 <	<1 <1 10 <1	<1 <1 0 <10
TRH C6 - C10 lessBTEX (#1) Benzene Toluene	TRH C6 - C10 lessBTEX (F1) Bergene Toluene	100 µg/L 1 µg/L 10 µg/L	<10 <1 <1	<10 <10 <1 <1 <1 <1	<10 <10 <1	<10 <1 <1	<10 <10 <1 <1 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	0 <10 <1 <1	<10 <1 <1	<10 <10 <1 <1 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 <10 <1 <1 <1 <1	<10 <10 <1	<10 <1 <1	<10 <1 <1	<10 <1 <1	<10 × <1 ×	<10 < <1 <	0 <1	0 <10 <1 <1
Ethylbenzene m+p-xylene o-xylene Nachthalene	Ethylbenzene m+p-xylene o-xylene Nashthalene	10 µg/L 20 µg/L 10 µg/L 10 us/L	<2 <1 <1	d d d d d d	d d d	62 61 61	4 4 4 4 4	62 61 61	(2 (1	4 4	<2 <1 <1	42 41	4 d d	d d	62 61 61	62 61 61	62 61 61	d d	<2 <1 <1	k1 k2 k1 k1	0 0 0 0 0 0	d d d	d d	d d	d d	<2	0 0 0 0 0 0	42 1 <1 1 <7	<1 <2 <1 <1
TRH C10 - C14 TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36)	TRH C10 - C14 TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36)	36 µg/L 360 µg/L 516 µg/L 972 µg/L	<100 <100	<50 <50 <100 <100 <100 <100 <50 <50	<50 <100 <100	<100 <100 <50	<50 <50 <100 <100 <100 <100 <50 <50	<50 <100 <100 <50	<50 <100 <100 <50	<50 0 <10 0 <10 <50	0 <50 00 <100 00 <100 0 <50	300 430 810	<50 <50 <100 <100 <100 <100 <50 <50	<50 <100 <100 <50	<50 <100 <100 <50	<50 <100 <50	<50 <100 130	<50 <100 110 110	<50 <100 <100 <50	<100 <100 <50	<50 <50 <100 <100 <100 <100 <50 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<100 <100 <50	<50 × <100 × <100 ×	<50 < <100 < <100 < <50 <	100 <1 100 <1 100 <1) <50 00 <100 00 <100 0 <50
TRH >C10 - C16 TRH >C10 - C16less Naphthalene (F2) TRH >C16 - C34 TRH >C34 - C40	TRH > C10 - C16 TRH > C10 - C16less Naphthalene TRH > C16 - C34 TRH > C34 - C40	76.8 µg/L 76.8 µg/L 684 us/L 252 µg/L	<50 <50 <100	<50 <50 <50 <50 <100 <100	<50 <50 <50	<50 <50 <100	<50 <50 <50 <50 <100 <100	<50 <50 <100	<50 <50 <100	<50 <50 > <10	0 <50 0 <50 00 <100	64 64 570	<50 <50 <50 <50 <100 <100	<50 <50 <100	<50 <50 <100	<50 <50 <100	<50 <50 170	<50 <50 170	<50 <50 <100	<50 <50 <100	<50 <50 <50 <50 <100 <100	<50 <50 <100	<50 <50 <100	<50 <50 <100	<50 <50 <100	<50 × <50 × <100 ×	<50 < <50 < <100 <	0 <5 0 <5 100 <1	3 <50 0 <50 00 <100
Total +ve TRH (>C10-C40) Naphthalene Acenaphthylene	Total +ve TRH (>C10-C40) Naphthalene Acenaphthylene	1006 µg/L 10 µg/L	<0.2	<50 <50 <0.2 <0.2 <0.1 <0.1	<100 <50 <0.1	<50 <0.1 <0.1	<50 <50 <0.1 <0.1 <0.1 <0.1	<50 <0.1 <0.1	<50 <0.2 <0.1	<50 <0.	0 <50 2 <0.2 1 <0.1	840 <0.2 <0.1	<50 <50 <0.2 <0.2 <0.1 <0.1	<50 <1 <0.2	<50 <0.1 <0.1	<50 <0.1 <0.1	290 <0.1 <0.1	170 <0.1 <0.1	<50 <0.1 <0.1	<50 <0.2 <0.1	<50 <50 <0.2 <0.2 <0.1 <0.1	<50 <0.1 <0.1	<50 <0.1 <0.1	<50 <0.1 <0.1	<50 <0.1 <0.1	<50 × <0.2 × <0.1 ×	<50 < <0.2 < <0.1 <	3.2 <0 0.1 <0	0 <50 .2 <0.1 .1 <0.1
Acenaphthene Fluorene Phonanthrene Anthracene	Acensphthene Flacene Phenanthrene Anthracene	10 µg/L 10 µg/L 1 µg/L 1 µg/L	<0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	K0.1 K0.1 K0.1 K0.1	<0.1 <0.1 <0.1	<0. <0. <0.	1 <0.1 1 <0.1 1 <0.1 1 <0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	K0.1 K0.1 K0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 × 0.1 × <0.1 × <0.1 ×	<0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 <0.1	1.1 <0 0.1 <0 0.1 <0	1 <0.1 1 <0.1 1 <0.1 1 <0.1
Pyrone Pyrone Benzo(a)anthracene Chrysene	Fluoranthene Pyrene Benzo(a)anthracene Chrysene	1 μg/L 10 μg/L 10 μg/L 10 μg/L	K0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0. <0. <0.	1 <0.1 1 <0.1 1 <0.1 1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 + <0.1 + <0.1 + <0.1 +	<0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 < <0.1 <0.1	0.1 <0 0.1 <0 0.1 <0	1 <0.1 1 <0.1 .1 <0.1 1.1 <0.1
Benzo(b.j-k)fluoranthene Benzo(alorrene Indeno(1,2,3-c,d)pyrene Dhenzo(a,h)anthracene	Benzo(b, +k fluoranthene Benzo(alovrene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	20 µg/L 1 us/L 10 µg/L 10 µg/L	<0.1 <0.1	<0.2 <0.2 <0.1 <0.1 <0.1 <0.1	<0.1 <0.2 <0.1	<0.2 <0.1 <0.1	<0.2 <0.2 <0.1 <0.1 <0.1 <0.1	K0.2 K0.1 K0.1	<0.2 <0.1 <0.1	<0. <0.	2 <0.2 1 <0.1 1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.2 <0.1 <0.1 <0.1 <0.1	<0.1 <0.2 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.2 <0.1 <0.1 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.1 <0.1 <0.1	k0.2 k0.1 k0.1	<0.2 - <0.1 - <0.1 -	<0.2 < <0.1 < <0.1 <).2 <0).1 <0 0.1 <0	2 <0.2
Benzo(g,h,/iperylene Benzo(a)pyrene TEQ Total +vePAIr's	Benzo(g)h/i)perylene Benzo(a)pyrene TEQ Total +vePAH's	10 µg/L 50 µg/L 10 µg/L	<0.1 <0.5	<0.1 <0.1 <0.5 <0.5 <0.1 <0.1	<0.1 <0.1 <0.5	<0.1 <0.5 <0.1	<0.1 <0.1 <0.5 <0.5 <0.1 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0. <0.	.1 <0.1 5 <0.5 .1 <0.1	<0.1 <0.5 <0.1	<0.1 <0.1 <0.5 <0.5 <0.1 <0.1	<0.1 <0.1 <0.5	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.1 <0.5 <0.5 <0.1 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1	<0.1 <0.5 <0.1		<0.1 + <0.5 + <0.1 +	<0.1 < <0.5 < <0.1 <	1.1 <0 3.5 <0 0.1 <0	.1 <0.1 .5 <0.5 .1 <0.1
Perfluorobutanesuffonic acid Perfluoropantanesuffonic acid Perfluorohexanesuffonic acid - PFRts S	Perfluorobutanesulfonic acid Perfluoropentanesulfonic acid Perfluorobexanesulfonic acid - PFHxS	0.05 µg/L 0.1 µg/L 0.036 µg/L	<0.01 <0.01 <0.01		<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 0.05 <0.01 0.03 0.02 0.06	<0.01 <0.01 0.03	0.02 <0.0 0.01	<0. 1 <0. 0.0	.01 0.05 .01 <0.01 2 <0.01	0.01 . <0.01 . 0.03	0.03 <0.01 <0.01 <0.01 0.01 0.01	<0.1 <0.01 <0.01	0.01 0.01 0.04	<0.01 <0.01 0.02	<0.01 <0.01 0.02	0.01 0.01 0.03	<0.01 <0.01 0.03	0.01 ×0.01 0.03	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 + <0.01 + <0.01 -	<0.01 0 <0.01 < <0.01 0	.01 <0 0.01 <0 .01 0.0	0.01 <0.01 0.01 <0.01 0.01 0.01
Perfluoroheptanesuffonic acid Perfluorooctanesuffonic acid PFOS Perfluorodecanesuffonic acid	Perfluoroheptaneauffonic acid Perfluorocctaneauffonic acid PFOS Perfluorodecaneauffonic acid Perfluorodecaneauffonic acid	0.05 µg/L 1.26 µg/L	<0.02	0.02 0.02 <0.02 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.01 <0.01 <0.02 0.03	<0.01 <0.01 <0.02	<0.0 0.01 <0.0	0.00	.01 <0.01 2 0.02 .02 <0.00		<0.01 <0.01 <0.01 0.02 <0.02 <0.02	0.01 <0.01 0.02	<0.01 0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 0.01 <0.02	<0.01 0.02 <0.02	<0.01 0.03 <0.02	<0.01 <0.01 <0.01 <0.01 <0.02 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 - 0.01 - <0.02 -	<0.01 < <0.01 < <0.02 <	0.01 <0 0.01 <0 0.02 <0	0.01 <0.01 0.01 <0.01 0.02 <0.02
Perfluorobutanoic acid Perfluoropertanoic acid Perfluorohexanoic acid Perfluorohexanoic acid	Perfluoropentanoic acid Perfluorohexanoic acid Perfluoroheptanoic acid	0.024 µg/L 0.036 us/L 0.12 µg/L 0.012 µg/L	<0.02 <0.01 <0.01	<0.02 <0.02 0.01 0.01	<0.02 <0.01 <0.01	<0.02 <0.02 <0.01 <0.01	<0.02	<0.04 <0.02 <0.01 <0.01	<0.0 <0.0 0.01 <0.0	2 <0. 2 <0. <0. 1 <0.	02 <0.02 01 0.01 01 <0.01	0.02 0.03 0.02 <0.01	<pre><0.02</pre>	<0.02 <0.02 <0.02 <0.01	<0.02 <0.02 0.01 0.01	<0.02 <0.02 <0.01	<0.02 <0.02 0.01	<0.02 0.02 0.01	<0.02 <0.02 0.01 0.01	0.03 0.02 0.01	<0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.02 <0.01 <0.01	<0.02 <0.02 <0.01 <0.01	<0.02 <0.02 <0.01 <0.01	<0.02 + <0.02 + 0.01 0 <0.01 -	<0.02 < <0.02 0 0.01 0 < <0.01 <	02 <0 02 0.0 0.01 <0	02 <0.02 02 <0.02 12 <0.01
Perfluorooctanoic acid PFOA Perfluorononanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid	Perfluorocctanoic acid PFOA Perfluorocctanoic acid Perfluorocctanoic acid Perfluorocctanoic acid	0.036 µg/L 0.1 µg/L 0.2 µg/L 0.2 µg/L	<0.01 <0.02	0.01 0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02	<0.01 <0.01 <0.02 <0.02	<0.01 <0.01 <0.02 <0.02	<0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.02 0.01	<0.01 <0.01 <0.02 <0.02	0.01 ×0.0 ×0.0		2 0.01 .01 <0.01 .02 <0.02 .02 <0.02		0.02 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02		<0.01 <0.02 <0.02	0.02 <0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02			<0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02		<0.01 <0.01 <0.02 <0.02	<0.01 <0.01 <0.02 <0.02	<0.01 <0.01 <0.02 <0.02	<0.01 + <0.01 + <0.02 + <0.02 +	<0.01 < <0.01 < <0.02 < <0.02 <		0.01 <0.01 0.01 <0.01 0.02 <0.02 0.02 <0.02
Perfluorododecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid 4:2 FTS	Perfluorodode canoic acid Perfluorotride canoic acid Perfluorotetrade canoic acid 4:2 FTS	0.5 us/L	<0.05	<0.05 <0.05 <0.1 <0.1 <0.5 <0.5	<0.05 <0.1 <0.5	<0.05 <0.1 <0.5	<0.05 <0.01 <0.1 <0.02 <0.5 <0.02	K0.05 K0.1 K0.5	K0.0 K0.1 K0.5	6 <0.	.05 <0.05 .1 <0.1 .5 <0.5	<0.05 <0.1 <0.5	<0.05 < 0.05 <0.1 < 0.1 <0.5 < 0.5	<0.02 <0.05 <0.1	<0.05 <0.1 <0.5	<0.05 <0.1 <0.5	<0.05 <0.1 <0.5	<0.05 <0.1 <0.5	<0.05 <0.1 <0.5	K0.05 K0.1 K0.5	<0.05 <0.05 <0.1 <0.1 <0.5 <0.5	<0.05 <0.1 <0.5	K0.05 K0.1 K0.5	<0.05 <0.1 <0.5	k0.05 k0.1 k0.5	<0.05 × <0.1 × <0.5 ×	<0.05 < <0.1 < <0.5 <	1.05 <0 1.1 <0 0.5 <0	.05 <0.05 .1 <0.1 .5 <0.5
6:2 FTS 8:2 FTS 10:2 FTS	6:2 FTS 8:2 FTS 10:2 FTS	1.188 µg/L 0.2 µg/L 0.2 µg/L	<0.01 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.1 <0.02 <0.5 <0.02 <0.01	<0.01 <0.02 <0.02	0.12 ×0.0 ×0.0	2 <0. 2 <0.	01 0.1 02 <0.00 02 <0.00	<0.01 ! <0.02 ! <0.02	0.12 ×0.01 <0.02 ×0.02 ×0.02 ×0.02	<0.01 <0.01 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	0.01 ×0.02 ×0.02	<0.01 <0.01 <0.02 <0.02 <0.02 <0.02	0.02 <0.02 <0.02	<0.01 <0.02 <0.02	<0.01 <0.02 <0.02	<0.02 <0.02	<0.01 + <0.02 + <0.02 +	<0.01 0 <0.02 <	01 <0 0.02 <0 0.02 <0	01 0.01 .02 <0.02 .02 <0.02
Perfluorocctane suffonamide N-Methyl perfluorocctane suffonamide N-Ethyl perfluorocctanesuffonamide	Perfluorocctans sufforamide N-Methyl perfluorocctane sufforamide N-Ethyl perfluorocctanesulforamide	1 ua/L 0.5 µg/L 1 µg/L	<0.1 <0.05 <0.1	<0.1 <0.1 <0.05 <0.05 <0.1 <0.1	<0.1 <0.05	<0.1 <0.05	<0.1 <0.01 <0.05 <0.02 <0.1 <0.02	<0.1 <0.05	<0.1 <0.1	5 <0.	.05 <0.05	<0.1 <0.05	<0.1 <0.1 <0.05 <0.05 <0.1 <0.1	<0.02 <0.1	<0.1 <0.05	<0.1 <0.05 <0.1	<0.1 <0.05	<0.05 <0.1	<0.1 <0.05 <0.1	<0.1 <0.05 <0.1	<0.1 <0.1 <0.05 <0.05 <0.1 <0.1	<0.1 <0.05	<0.05 <0.1	<0.1 <0.05	<0.05	<0.1 + <0.05 +		0.1 <0 0.05 <0 0.1 <0	0.1 <0.1 0.05 <0.05 0.1 <0.1
N-Me perfluorooctanesuffonamid cethanol N-Et perfluorooctanesuffonamid	N-Me perfluorooctanesulfonamidoethanol N-Et	0.5 µg/L 5 µg/L	<0.05 <0.5	<0.05 <0.05 <0.5 <0.5	<0.05 <0.5	<0.05 <0.5	<0.05 <0.1 <0.5 <0.05	<0.05 <0.5	<0.0 <0.5	S <0.	.05 <0.05	<0.05 <0.5	<0.05 <0.05 <0.5 <0.5	<0.1	<0.05	<0.05 <0.5	<0.05	<0.05	<0.05	<0.05 <0.5	<0.05 <0.05 <0.5 <0.5	<0.05 <0.5	<0.05 <0.5	<0.05 <0.5	<0.05 <0.5	<0.05	<0.05 <	0.05 <0	1.05 < 0.05
N-Et perfluoroctanesulfonamid oethanol MePerfluoroctanesulf- anid naratic arid EtPerfluoroctanesulf-	perfluorooctanesulfonamidoethanol MePerfluorooctanesulf-amid oscetic arid EtPerfluorooctanesulf-amid oscetic	0.2 µg/L 0.2 µg/L		<0.02 <0.02 <0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.1 <0.02 <0.05	<0.02 <0.02	<0.0 <0.0	2 <0.	.02 <0.00	<0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.5	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 -	<0.02 <	0.02 <0	.02 <0.02
anid oscalic acid Total Positive PFIAS & PFOS Total Positive PFOS & PFOS Total Positive PFOS Total Positive PFAS	Total Positive PFHxS & PFOS Total Positive PFOA & PFOS Total Positive PFAS	0.072 us/L 0.05 µg/L 1.25 µg/L	<0.01 <0.01 <0.01	0.05 0.04 0.03 0.03 0.09 0.07	0.02 <0.01 0.02	0.02 <0.01 0.02	0.02 <0.5 <0.01 <0.02 0.02 <0.02	0.03 <0.01 0.03	0.03 0.03 0.2	0.0	4 0.02 4 0.03 6 0.19	0.06 0.05 0.16	0.01 0.03 0.02 0.02 0.19 0.03	<0.02 0.03 0.04	0.05 0.04 0.13	0.02 0.02 0.06	0.02 0.04 0.08	0.04 0.05 0.14	0.04 0.05 0.1	0.05 0.05 0.17	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.02	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.01 - 0.01 - 0.05 0	<0.01 0 <0.01 <	0.0 0.01 0.0 0.8 0.0	3 0.01 13 <0.01 14 0.03
Arsenic-Dissolved Boron-Dissolved Barium-Dissolved Bervilium-Dissolved	Arsenic-Dissolved Boron-Dissolved Barium-Dissolved Bervilium-Dissolved	4.6 µg/L 120 µg/L 3720 µg/L 5 µg/L	<1 50 1400 <0.5	2 <1 100 70 46 41 <0.5 <0.5	<1 50 38 <0.5	<1 60 32 3	<1 <1 50 80 39 16 4 0.6	<1 50 24 2	<1 <20 670 <0.5	100 52 <0.	<1 0 <20 650 5 <0.5	100 76 <0.5	<1 <1 30 70 680 53 <0.5 <0.5	<1 100 62 <0.5	<1 100 120 <0.5	<1 100 53 <0.5	<1 90 52 <0.5	<1 90 60 <0.5	<1 90 35 <0.5	41 90 37 40.5	<1 <1 70 50 2100 3100 <0.5 <0.5	<1 70 6100 <0.5	<1 70 4800 <0.5	<1 50 5000 <0.5	<1 60 1900 <0.5	<1 < <20 < 80 1 <0.5 <	<1 < 40 < 120 1 <0.5 <	0 60 0 76 0.5 <0	30 100 15 <0.5
Cadmium-Dissolved Chromium-Dissolved Copper-Dissolved Copper-Dissolved Cobalt-Dissolved	Cadmium-Dissolved Chromium-Dissolved Copper-Dissolved Copper-Dissolved Cohalt-Dissolved	0.45 us/L 69.6 µg/L 9.6 µg/L	<0.1 <1 2	<0.1 0.1 <1 <1 3 1 24 30	0.1 <1 <1 66	0.3 ×1 4	0.4 0.2 <1 <1 12 4 110 20	0.3 1 3	<0.1 58 7	<0. <1 6	1 <0.1 57 8	<0.1 <1 5	<0.1 <0.1 56 <1 8 2 3 7	<0.1 <1 10	0.3 <1 4	0.7 <1 3	<0.1 <1 4 38	0.2 <1 3	0.1 <1 3	0.1 <1 <1 29	<0.1 <0.1 <1 <1 <1 1 5 4	0.1 <1 9 7	<0.1 <1 1	<0.1 <1 2	<0.1 <1 2	<0.1 - 9 1 8 4 <1	<0.1 < 14 1 4 5	1.1 <0 <1 <1	1 <0.1
Mercury-Dissolved Manganese-Dissolved Mahhhdanum-Dissolved	Cobalt-Dissolved Mercury-Dissolved Manganese-Dissolved Molybdenum-Dissolved	114 µg/L 0.05 µg/L 3450 µg/L 52.4 µg/L	×0.05 150 2	<0.05 <0.05 1300 2900 1 1 1	<0.05 5400 3	<0.05 6900 <1	<0.05 <0.05 \$100 1200 <1 <1	<0.05 3900 <1	K0.0 K5 42	5 <0. 230 1	.05 <0.05 0 <5 42	i <0.05 1800 2	<0.05 <0.05 <5 980 41 3	<0.05 1400 2	<0.05 9100 3	<0.05 13000 <1	<0.05 2300 <1	<0.05 3400 <1	<0.05 3100 <1	<0.05 1600 <1	<0.05 <0.05 190 250 1 1	<0.05 330 2	<0.05 210 <1	<0.05 230 <1	<0.05 190 1	<0.05 × <5 ×	<0.05 < <5 <	1.05 <0 3 7 7	.05 <0.05 <5
Nickel-Dissolved Lead-Dissolved Antimony-Dissolved Selenium-Dissolved	Nickel-Dissolved Lead-Dissolved Antimony-Dissolved Selenium-Dissolved	126 ua/L 49.2 µg/L 2.4 µg/L 1 µg/L	11 <1 <1	20 35 41 <1 <1 <1 <1 <1	55 c1 c1 c1	68 K1 K1 K1	99 19 <1 <1 <1 <1 <1 <1	65 K1 K1	2 1 1 <1	5 <1 <1 <1	3 1 1 <1	13 <1 <1 <1	3 4 1 <1 <1 <1 <1 <1	19 <1 <1 <1	61 <1 <1 <1	<1 <1 <1 <1	22 <1 <1 <1	24 <1 <1	28 <1 <1 <1	45 K1 K1 K1	11 12 cl cl cl cl cl cl	14 <1 <1 <1	9 k1 k1 k1	14 <1 <1 <1	6 41 41 41	<1 1 <1 2 <1 4	1 c c1 c 1 1 c1 c	1 (1 (1	<1 <1 1 <1
Tin-Dissolved Zinc-Dissolved Iron-Dissolved Arsenic-Total	Tin-Dissolved Zinc-Dissolved Iron-Dissolved Arsenic-Total	10 µg/L 583.2 µg/L 5760 µg/L	<1 10 <10 4	<1 <1 180 190 1900 1900	<1 310 4800 47	K1 660 5400	<1 <1 770 210 40 300 15 6	470 4400	K1 K1 150	<1 64 <10	<1 22 0 180	<1 20 <10	<1 <1 24 16 170 <10	1 96 170	1 110 10	<1 690 280	<1 120 <10	<1 57 <10	<1 69 <10 8	K1 85 690	<1 <1 18 13 10 <10	<1 10 3800	<1 5 <10	<1 10 <10	1 10 <10	<1 ×1 × ×10 ×	<1 < 4 3 <10 <	1 10 <1	<1 4 0 <10
Boron-Total Barium-Total Beryllium-Total	Boron-Total Barium-Total Beryllium-Total	120 µg/L 11640 µg/L 37.2 µg/L	60 9300 <0.5	100 70 310 890 14 22	90 1500 57	50 400 19	30 70 700 120 33 6	40 210 11	<20 760 k0.5	100 770	<20 650 <0.5	100 9700 31	20 80 760 990 k0.5 1	90 84 <0.5	100 2600 13	100 1600 6	100 1500 3	80 1800 4	90 1200 4	100 660 7	80 60 5000 6800 <0.5 <0.5	70 13000 <0.5	60 8600 k0.5	50 8600 <0.5	60 2800 <0.5	20 3 89 1 <0.5	30 2 170 1 <0.5 <	50 0 81 0.5 K	<20 170 5 <0.5
Cadmium-Total Chromium-Total Copper-Total Cobalt-Total	Cadmium-Total Chromium-Total Copper-Total Cobalt-Total	1.632 ua/L 102 µg/L 816 µg/L 336 ua/L	<0.1 18 18	45 80 200 420 75 100	170 950 230	36 200 130	0.3 64 15 440 87 170 32	0.5 23 130 79	65 9 3	24 20 15	69 11 3	71 680 280	85 8 12 36 4 17	1 12 11	55 320 400	18 110 440	14 99 100	20 120 180	14 80 240	29 150 59	9 25 4 12 6 5	15 9 10	6 4 3	12 6 2	28 5	10 2 17 5 <1 -	27 2 9 1 <1 <	3 <1 1 1	15 7 <1
Mercury-Total Manganese-Total Molybdenum-Total Nickel-Total	Mercury-Total Manganese-Total Molybdenum-Total Nickel-Total	1.128 µg/L 10200 µg/L	0.06 230 2	0.05 0.1 2600 4700 1 2 77 160	9200 2 300	7600 ×1 140	<0.05	<0.05 4300 <1 87	K0.0 K5 44	5 0.1 930 3	<0.05 13 41	0.94 8500 5	<0.05 0.1 18 1200 49 2 12 11	0.08 1600 1 23	<0.05 19000 3 200	<0.05 18000 2 210	4900 1	0.3 6000 1 63	<0.05 8600 <1 68	0.07 2300 2 58	<0.05 <0.05 240 250 3 3 15 32	<0.05 420 3 23	<0.05 220 <1 11	×0.05 230 2 17	x0.05 200 3 17	<0.05 × 19 1 5 8 5 6	<0.05 < 11 1 8 7 6 0	1.05 k0 21 7	05 < 0.05 < 5 10
Lead-Total Antimony-Total Selenium-Total Tin-Total	Lead-Total Antimony-Total Selenium-Total Tin-Total	165 us/L 312 ys/L 24 ys/L 4.8 ys/L 14.4 ys/L	1 <1	54 110 <1 <1 <1 1	220 <1 3	45 <1 <1	83 20 <1 <1 1 <1	24 <1 3	2 1 <1	11 <1 <1	2 <1 <1	260 1 4	2 17 1 <1 <1 <1	2 K1 K1	95 <1 2	43 <1 <1	36 <1 <1	52 <1 1	31 <1 3	34 <1 <1	2 4 4 4 41 41 41 41 41	6 <1 <1	d d	2 <1 <1	1 <1 <1	2 1	1 1 2 2 4 4	(1 (1 (1 (1	<1 2 <1
Zinc-Total Iron-Total	Zinc-Total	14.4 µg/L 1320 µg/L 120000 µg/L	51	700 1100 49000 100000	2600 250000	1100 75000	1600 390 83000 20000	750 33000	13 290	61 420	42 00 440	880 48000	40 64 620 7100	110 970	910 48000	960 42000	350 17000	470 26000	340 17000	660 38000	25 74 1400 2500	62 8500	20 1700	18 1100	17 860	36 1 380 2	19 1 270 6	0 29	6 100

Site Month			North Stra Feb-24	May-24	Aug-24	Nov-24
Borehole numbers Calcium - Dissolved	Trigger values	Unit	100	SMW_	в нозв	110
Calcium - Dissolved Potassium - Dissolved Sodium - Dissolved	54 54	mat. mgt.	5.6	6.9	110 3 19	4 20
Magnesium - Dissolved Hardness	3120 7306	mgt. mgt. mgCsCO3/L	200 <0.5 460	K0.5	2	3
Hydroxide Alkalinity (OH-) as CaCO3 Bicarbonate Alkalinity as CaCO3	2520 768	mgl	170	150	KS	KS.
	778.8 74.4	mgl.	38	43	42 KS	68 KS
Sulphate, SO4	840 600	mal. mgl.	210 160	190 250	220	220
Chloride, CI Ionic Balance	6948 8.4 1.68	mgt. %	280 8	-8	33 2	42 -3
ionic Balance Ammonia (as N in water) Nitrate as N in water	2.4	mgt.	0.095	0.01	<0.005 0.61	0.011 0.87
Total Nitrogen in water Dichlorodifluoromethane	3.6 100	mgt. µgt	1 <10	<10	0.7 <10	<10
Chloromethane	100	rgt.	<10	<10	<10	<10
Vinyl Chloride Bromomethane	10	pgt.	<10 <10	<10	<10 <10	<10 <10
Chloroethane	100	uat	<10 <10	<10 <10	<10 <10	<10 <10
Trichlorofluoromethane 1,1-Dichloroethene	10	pgt.	<1	<1	<1	ci
Trans-1,2-dichloroethene 1,1-dichloroethane	10	µgt. µgt.	ki ki	<1	ki ki	<1 <1
Cis-1,2-dichloroethene	10	pg/L	<1	<1	<1	<1
Bromochloromethane Chloroform	10	pgt.	<1 <1	<1 <1	ki ki	ki ki
2,2-dichloropropane	10	pgt	<1	<1	et et	<1
1,2-dichloroethane 1,1,1-trichloroethane	10	pgt.	<1	<1	KI	KI
1,1-dichloropropene Cyclohexane	10	pgt.	<1 <1	<1 <1	ki ki	ki ki
Carbon tetrachloride	- 1	pgt	<1	<1	<1	<1
Derizene Dibromomethane	10	pgt.	<1 <1	<1	ki ki	KI KI
1,2-dichloropropane	10	μgt	<1	<1	<1	<1
Trichloroethene Bromodichloromethane	1	unt. pgt.	<1 <1	<1	ki ki	<1 <1
trans-1,3-dichloropropene	10	pg/L	<1	<1	<1	<1
cis-1,3-dichloropropene 1,1,2-trichloroethane	10	µgl.	<1	<1	ki ki	ki ki
Toluene	10	pg/L	<1	<1	KI.	<1
1,3-dichloropropane Dibromochloromethane	10	pgt.	<1 <1	<1	kl kl	k1
1,2-ditromoethane Tetrachioroethane	10	µgt.	<1 <1	<1	kl kl	<1 <1
1.1.1.2-letrachforcethane Chlorobenzene Ethylbenzene	10 10	ust ugt ugt	<1 <1	<1 <1	kl kl	K1 K1
Bromoform	10	pgt.	ki ki	<1	d	K1 K1
m+p-xylene Styrene	20 10	pgl.	<2 <1	<2 <1	<2 <1	<1 <1
1,1,2,2-tetrachloroethane o-xylene	10	pgt.	<1 <1	<1	<1 <1	<1 <1
1,2,3-trichloropropane	10	µg/L	<1	<1	<1	<1
Isopropylbenzene Bromobenzene	10	pgt.	<1	<1 <1	ci ci	<1 <1
n-propyl benzene 2-chlorotoluene	10	pgt.	<1 <1	<1	d d	<1 <1
4-chlorotoluene	10	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene Terl-butyl benzene	10	pgt.	<1	<1	ki ki	<1 <1
1,2,4-trimethyl benzene 1,3-dichlorobenzene	10	pgt.	<1	<1	ki ki	ki ki
Sec-butyl berzene	10	µg/L	<1	<1	<1 <1	KI.
1,4-dichlorobenzene 4-isopropyl toluene	10	pgt.	ki ki	<1	ki .	<1
1,2-dichlorobenzene	10	µg/L	ci .	<1	d d	<1 <1
n-butyl benzene 1,2-dibromo-3-chloropropane	10	µgt. µgt.	ki .	<1 <1	ki.	ki.
1.2.4-trichlorobenzene Hexachlorobutadiene	10	ual. ugl.	<1 <1	<1 <1	d d	ki ki
1,2,3-trichlorobenzene TRH C6 - C9	100	pgt.	<1 <10	<1 <10	<1 <10	<1 <10
TRH C6 - C10 TRH C6 - C10 leasETEX (F1)	100	unt. pgt.	<10 <10	<10 <10	<10 <10	<10 <10
Benzene Toluene	10	pgt. unt.	ki ki	<1 <1	kl kl	KI.
Ethylbenzene m+p-xylene	10 20	pgt.	<2	<2	k1 k2	<1 <2
o-xylene Nachthalene	10	ugt.	ci ci	<1 <1	ki ki	KI KI
TRH C10 - C14 TRH C15 - C28 TRH C29 - C36	96 360 516	pgt.	<50 <100	<50 <100 <100	<50 <100 <100	<50 <100
Total +ve TRH (C10-C35)	972	pgt.	<50 <50	<50 <50	<50	<50
TRH >C10 - C16 TRH >C10 - C16less Naphthalene (F2)	76.8 76.8	pgl.	<50	K50	<50 <50	<50 <50
TRH >C16 - C34 TRH >C34 - C40 Total +ve TRH (>C10-C40)	684 252	uat. ugt.	<100 <100	<100 <100	<100 <100	<100 <100
	1005	pgt.	<0.1	<0.1	<50 <0.1	K0.1
Acenaphthylene Acenaphthene	10	pgt.	<0.1	<0.1 <0.1	K0.1	K0.1
Fluorene Phonanthrene Anthracene	10	ugt.	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1
Fluorarthene	1 10	pgt.	<0.1 <0.1	<0.1 <0.1 <0.1	K0.1 K0.1	<0.1 <0.1
Pyrene Benzo(x)anthracene Chrysene	10	pgt pgt pgt	<0.1 <0.1	<0.1 <0.1	k0.1 k0.1	<0.1 <0.1
Benzo(b,j+k)fluoranthene	20	pgt.	<0.2	<0.2	K0.2	K0.2
Benzo(a)ovrene Indeno(1,2,3<,d)pyrene Dibenzo(a,h)anthracene	10	pgt.	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Benzo(g.h./lperylene Benzo(s)pyrene TEQ	10	pgt.	<0.1 <0.1	<0.1	K0.1	K0.1
Total +vePAH's	50 10	pgt.	<0.1	<0.5 <0.1	<0.1	<0.1
Perfluorobutanesulfonic acid Perfluoropentanesulfonic acid	0.06	pgt.	<0.01 <0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Perfluorohexanesulfonic acid - PFHxS Perfluoroheptanesulfonic acid	0.036	pgt.		<0.01	<0.01	<0.01
Perfluoroheptanesulfonic acid Perfluorooctanesulfonic acid PFOS	0.1	pgt.	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01
Perfluorodecane suffonic acid Perfluorobutanoic acid	1.26 0.024	pgt.	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
Perfluoropentanoic acid Perfluoropexanoic acid	0.036 0.12	uat.	<0.02 0.02	0.02	<0.02 <0.01	0.02
Perfluoroheptanoic acid Perfluorooctanoic acid PFQA	0.012	pgt.	<0.01 0.01	<0.01 0.01	<0.01 <0.01	<0.01 <0.01
Perfluorononanoic acid	0.1	pgt.		×0.01	<0.01 <0.02	×0.01
Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorododecanoic acid	0.2 0.5	ygt. uat.	<0.02 <0.02 <0.05	<0.02 <0.02 <0.05	k0.02 k0.05	<0.02 <0.02 <0.05
Perfluorotridecanoic acid Perfluorotetradecanoic acid	5	pgt.	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	k0.1 k0.5
42 FTS 62 FTS 82 FTS	1.188	ygt.	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
10:2 FTS	0.2 0.2	µgl. µgl.	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
Perfluorooctane sulfonamide N-Methyl perfluorooctane sulfonamide	0.5	unt. pgt	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
N-Ethyl perfluorooctanesulfonamide	1	pgt.	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctane sulfonamid cethanol	0.5	pgt	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctaneauffonamid cethanol	5	pgt.	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid overtic acid	0.2	µg/L	<0.02	<0.02	<0.02	<0.02
EXPERIOR OF THE SERVICE amid constic acid Total Positive PFHXS & PFOS	0.2	µg/L	<0.02	<0.02	<0.02	<0.02
Total Positive PFOA & PFOS	0.072	ual. ppl	<0.01 0.01 0.04	<0.01 0.01 0.05	<0.01 <0.01	<0.01 <0.01
Total Positive PFAS Arsenic-Dissolved	1.26 4.8	pgt.	<1 <20	0.05 <1	<0.01 <1	0.03 <1
Boron-Dissolved Barium-Dissolved	120 3720	pgt.	<20 110	94	40 40	41
Bervilium-Dissolved Cadmium-Dissolved Chambium-Dissolved	0.48	unt.	<0.5 <0.1	<0.5 <0.1	K0.5	<0.5 <0.1
Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved	69.6 9.6 114	pgt. pgt.	6	4	3	6
Mercury-Dissolved	0.05	ugt.	<0.05	<0.05	<1 <0.05	<1 <0.05
Manganese-Dissolved Molybdenum-Dissolved	3480 50.4	pgt.	7	<5 9	2	2
Nickel-Dissolved Lead-Dissolved Antimony-Dissolved	126 49.2	uat. µgt.	<1 <1	<1	k1 k1	k1
	2.4	pgl.	2 <1	1 <1	1 <1	2 <1
Tin-Dissolved Zinc-Dissolved	10 583.2	pgt.	ki ki	<1 5	ki ki	K1 3
	5760 62.4	ugt.	<10 <1	<10 <1	<10 <1	<10 <1
Arsenic-Total Boron-Total Barium-Total	120 11640	µgl. µgl.	<20 120	30 120	<20 49	20 49
Beryllium-Total Cadmium-Total Chromium-Total	37.2 1.632	ygt. uat.	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1
	102 816	µgl. µgl.	12 5	14	4	3 12
Cobalt-Total Mercury-Total Manganese-Total	336 1.128	ual. pgl.	<1 <0.05	<1 <0.05	k1 k0.05	<1 <0.05
Manganese-Total	10200 58.8	pgt.	<5 9	15 9	9 3	17
Molybdenum-Total		ust	1	13	2	2
Molybdenum-Total Nickel-Total Lead-Total	168 312	µg/L	<1	1	KI.	1
Molybdenum-Total Nickel-Total	312 2.4 4.5	pgt pgt pgt	<1 1 <1	1 2 <1	k1 2 k1	2 <1

Site Month	Month			Mar-23	Jun-23	Jun-24	Nov-24	Mar-23	Jun-23	Sep-23	Dec-23	Mar-24	Jun-24	he Bays Sep-24	Nov-24	Mar-23	Sep-23	Dec-23	Mar-24	Jun-24	Mar-23	Mar-23	Mar-23	Sep-24	Nov-24
Borehole numbers Calcium - Dissolved	Borehole numbers Calcium - Dissolved	Trigger values 564	Unit ma/L	56	S.	02s 63	88	27	82	51	92	S_02d 28	64	110	77	36	50	43	49	506 39	420	45	17	43	48
Potassium - Dissolved Sodium - Dissolved Magnesium - Dissolved	Potassium - Dissolved Sodium - Dissolved Magnesium - Dissolved	540 13200 1680	mg/L mg/L	15 29 3	14 51 19	10 79 4	56 180 7.2	24 360 13	16 32 7	22 200 11	41 560 26	17 320 9.8	8.9 76 9	12 88 18	13 110 13	35 110 22	30 140 28	32 130 29	26 75 15	7.4 16 6.1	370 9300 1300	4 170 19	1 5 0.7	27 130 28	120 17
Hardness Hydroxide Alkalinity (OH-) as CaCO3 Bicarbonate Alkalinity as CaCO3	Hardness Hydroxide Alkalinity (OH-) as CaCO3 Bicarbonate Alkalinity as CaCO3 Cabbaste Alkalinity as CaCO3	5400 50	mg/L mgCaCO3	150 KS	330 <5	180	250 kS	120 <5	230 kS	170 <5	340 <5	110 <5	200 <5	350 <5	240 k5	180 <5	240 KS	230 <5	180 KS	120 <5	6400 kS	190 <5	45 <5	220 <5	190 KS
Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 Sulphate, SO4	Carbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 Sulphate, SO4	972 50 972	mg/L mg/L ma/L	KS 810	<5 370	⊀5 270	45 230	√5 750	45 260	<5 200	KS 490	45 260	<5 140	K5 280	≼5 210	<5 630	kS 450	<5 480	KS 320	<5 190	45 150	KS 3S	45 40	<5 460	45 330
Chloride, CI Ionic Balance	Chloride, Cl Ionic Balance	3000 20400 16.8	%	32 -58	67	160 -19	310 -2	570 -30	29	280 -4	1000	300 4	150 -2	200 -6	220 -8	160	110	98	77 -13	24	17000	210 -6	8 -12	78 -S	150
Ammonia (as N in water) Nitrate as N in water Total Nitrogen in water	Ammonia (as N in water) Nitrate as N in water Total Nitrogen in water	5.48 1.2 7.44	mg/L mg/L	0.52 0.057 1	0.087	0.63 0.02 1.1	2.5 0.008 2.5	0.48 <0.005 0.8	0.66 0.02 1.6	0.21 <0.005 1	0.7 k0.005	0.33 0.13 0.9	0.96 0.59 1.8	1.5 0.077 5.2	0.098 24	1.5	0.15	<0.005 3.5	0.68 0.74 1.7	0.5 0.11 0.9	0.11 0.17 0.4	0.078 0.06 0.5	0.069 0.18 0.5	1.3 0.02 4.9	0.98 2.3
Dichlorodifluoromethane Chloromethane Vinyl Chloride	Dichlorodifluoromethane Chloromethane Vinyl Chloride	100	hâlt hâlt	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<100 <100	<10 <10	<10 <10	<10 <10	<10	<10 <10	<10	<10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
Bromomethane Chloroethane	Bromomethane Chloroethane	10	pg/L pg/L	<10 <10	<10	<10	<10 <10	<10 <10 <10	<10 <10	<100 <100 <100	<10 <10	<10 <10 <10	<10 <10	<10 <10	<10 <10 <10	<10	<10 <10	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10 <10	<10 <10
Trichlorofluoromethane 1,1-Dichloroethene	Trichlorofluoromethane 1,1-Dichloroethene	100	halt halt	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<100 <10	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1	<10 <1
Trans-1,2-dichloroethene 1,1-dichloroethane	Trans-1,2-dichloroethene 1,1-dichloroethane	10	half.	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1	<1 <1	<1	<1 <1	<1 <1	d d	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Cis-1,2-dichloroethene Bromochloromethane Chloroform	Cis-1,2-dichloroethene Bromochloromethane Chloroform	10 10 1.2	halt halt	41 41	<1 <1	<1 <1 2	k1 k1 k1	<1 <1 1	kl kl	<10 <10 <10	ki ki	<1 <1	<1 <1 <1	<1 <1 6	<1 <1	<1 <1	d d	<1 <1	<1 <1 2	<1 <1	<1 <1 <1	<1 <1	<1 <1 <1	<1 <1 1	ki ki
2,2-dichloropropane 1,2-dichloroethane	2,2-dichloropropane 1,2-dichloroethane	10	µg/L µg/L	<1 <1	<1	<1	<1 <1	<1	d d	<10	d d	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane 1,1-dichloropropene Cyclohexane	1,1,1-trichloroethane 1,1-dichloropropene Cyclohexane	10 10	halt halt	kl kl	<1 <1	<1 <1	<1 <1	<1	kl kl	<10 <10	ki ki	<1	<1 <1	<1 <1	<1 <1	<1 <1	d d	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<1 <1	d d
Carbon tetrachloride Benzene	Carbon tetrachloride Benzene	1	pg/L pg/L	ci ci	<1	<1 <1	<1 <1	<1 <1	kl kl	<10 <10	ki ki	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	d d	<1 <1	<1 <1	kl kl	<1	<1 <1	ki ki
Dibromomethane 1,2-dichloropropane	Dibromomethane 1,2-dichloropropane	10	µg/L	<1 <1	<1	<1 <1	ki ki	<1 <1	ki ki	<10 <10	<1 <1	<1	<1	<1	<1 <1	<1	<1 <1	<1	ki ki	<1	<1 <1	<1 <1	<1 <1	<1 <1	ki ki
Trichloroethere Bromodichloromethane	Trichloroethene Bromodichloromethane	1	us/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	kl kl	<10 <10	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	ki ki	<1 <1	ci ci	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	ki ki
trans-1,3-dichloropropene cis-1,3-dichloropropene 1,1,2-trichloroethane	trans-1,3-dichloropropene cis-1,3-dichloropropene 1,1,2-trichloroethane	10 10	hâtr hâtr	<1 <1	<1 <1	<1 <1	ki ki	<1 <1	kl kl	<10 <10	ki ki	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	ki ki	<1 <1	kl kl	<1	<1 <1	<1 <1	<1	<1	<1 <1
Toluene 1,3-dichloropropane	Tolsene 1,3-dichloropropane	10	pg/L pg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1 <1	<1 <1	K1 K1	<1 <1	<1 <1	ki ki	<1	<1 <1	41 41	<1 <1	ki ki	<1 <1	<1 <1	<1 <1
Dibromochloromethane 1,2-dibromoethane Tetrachloroethene	Dibromochloromethane 1,2-dibromoethane Tetrachloroethene	10 10 10	yg/L yg/L yg/L	<1 <1 <1	d d	<1 <1 <1	k1 k1	<1 <1 <1	k1 k1	<10 <10 <10	kl kl	<1 <1 <1	<1 <1 <1	K1 K1	61 61 61	41 41 41	<1 <1 <1	<1 <1 <1	41 41	<1 <1 <1	ki ki ki	ki ki ki	<1 <1 <1	<1 <1 <1	kl kl
1.1.1.2-letrachloroethane Chlorobenzene Efsylbenzene	1.1.1.2-tetrachloroethane Chlorobenzene Ethylbenzene	10 10 10	us/L µg/L µg/L	k1 k1 k1	d d	<1 <1 <1	k1 k1	<1 <1 <1	k1 k1	<10 <10 <10	kl kl	<1 <1	<1 <1 <1	K1 K1	61 61	d d	K1 K1	<1 <1 <1	41 41	<1 <1	ki ki	ki ki ki	<1 <1 <1	<1 <1 <1	kl kl
Bromoform m+p-xylene Styrene	Bromoform m+p-xylens Styrens	10 20 10	yg/L yg/L	k1 k2 k1	(1 (2 (1	<1 <2 <1	k1 k2 k1	<1 <2 <1	k1 k2 k1	<10 <20 <10	k1 k2 k1	<1 <2 <1	<1 <2 <1	<1 <2 <1	<1 <2 <1	<1 <2 <1	<1 <2 <1	<1 <2 <1	k1 k2 k1	d d	k1 k2 k1	k1 k2 k1	<1 <2 <1	<1 <2 <1	<1 <2 <1
1,1,2,2-letrachloroethane o-xylene 1,2,3-trichloropropane	1,1,2,2-tetrachloroethane o-xylene 1,2,3-trichloropropane	10	µg/L µg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	d d	<1 <1	<1 <1	ci ci	ci ci	<1 <1	<1 <1 <1	<1 <1 <1	k1 k1	<1 <1	ki ki	d d	<1 <1	<1 <1 <1	<1 <1
Isopropylberzene Bromobenzene	1,2,3-trichloropropane Isopropy/benzene Bromobenzene	10	hâlt hâlt	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	d d	<1 <1	<1 <1	k1 k1	61 61	<1 <1	<1 <1	<1	41 41	41 41	k1 k1	ki ki	41 41	<1 <1	<1
n-propyl benzene 2-chlorotolsene 4-chlorotolsene	n-propyl benzene 2-chlorotoluene 4-chlorotoluene	10 10	hâl/F hâl/F	<1 <1	d d	<1 <1	<1 <1	<1 <1	kl kl	<10 <10	d d	<1 <1	<1 <1	d d	ci ci	d d	<1 <1 <1	<1 <1 <1	kl kl	d	ki ki	ki ki	<1 <1	<1 <1 <1	<1 <1
1,3,5-trimethyl benzene Terl-butyl benzene	1,3,5-trimethyl benzene Tert-butyl benzene	10	half.	ki ki	<1 <1	<1 <1	k1 k1	<1 <1	ki ki	<10 <10	ki ki	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	d d	<1 <1	<1 <1	ki ki	<1 <1	<1 <1	<1 <1
1,2,4-trimethyl benzene 1,3-dichlorobenzene Sec-butyl benzene	1,2,4-trimethyl benzene 1,3-dichlorobenzene Sec-butyl benzene	10	pg/L pg/L	kl kl	<1 <1	<1 <1	ki ki	<1 <1	kl kl	<10 <10	ki ki	<1	kl kl	<1 <1	<1 <1	<1 <1	2 <1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	d d
1,4-dichlorobenzene 4-isopropyl tolsene	1,4-dichlorobenzene 4-isopropyl toluene	10		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10 <10	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	d d
1,2-dichlorobenzene n-butyl benzene 1,2-dibromo 3-chlorogropane	1,2-dichlorobenzene n-butyl benzene 1,2-dibromo-3-chloropropane	10	hâlt hâlt	kl kl	<1 <1	<1 <1	k1	<1 <1	kl kl	<10 <10	ki ki	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	d d	<1	<1 <1	<1 <1	<1 <1	kl kl	<1	<1 <1	d d
1.2.4-trichlorobenzene Hexachlorobutadiene 1,2,3-trichlorobenzene	1.2.4-trichlorobenzene Hexachlorobutadiene 1,2,3-trichlorobenzene	10 1 10	us/L pg/L pg/L	d d	<1 <1	k1 k1	ki ki	<1 <1	kl kl	<10 <10	ki ki	<1 <1	k1 k1	k1 k1	61 61	<1 <1	kl kl	<1 <1	d d	<1 <1	k1 k1	d d	c1 c1 c1	<1 <1	d d
TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 leasETEX (#1)	TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 lessBTEX (F1)	68.4 68.4 68.4	pg/L us/L pg/L	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<100 <100 <100	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10 <10
Benzene Toluene Ethylbenzene	Benzene Tolsene Ethylbenzene	1 10 10	pg/L us/L pg/L	41 41	<1 <1 <1	<1 <1 <1	41 41 41	<1 <1 <1	<10 <1 <1	<10 <10 <10	ki ki	<1 <1 <1	41 41 41	<1 <1	41 41 41	<1 <1 <1	k1 k1 k1	<1 <1	41 41	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	41 41
m-p-xylene o-xylene Nachthalene	m+p-xylene o-xylene Naphthalene	20 10 10	pg/L pg/L us/L	<2 <1 <1	d d	<2 <1 <1	<2 <1 <1	<2 <1 <1	<1 <2 <1	<20 <10 <10	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	k2 k1 1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1	<2 <1 <1
TRH C10 - C14 TRH C15 - C28 TRH C29 - C36	TRH C10 - C14 TRH C15 - C28 TRH C29 - C36	132 528 468	yg/L yg/L yg/L	<50 180 160	110 440 <100	<50 200 250	<50 220 130	<50 130 <100	70 800 610	700 270	69 580 450	110 830 780	<50 <100 110	95 590 320	91 590 240	<50 <100 <100	65 260 <100	69 580 450	83 340 170	230 <100	<50 <100 <100	<50 <100 120	<50 100 <100	<50 150 110	×50 290 250
Total +ve TRH (C10-C36) TRH >C10 - C16 TRH >C10 - C16less Naphthalene (F2)	Total +ve TRH (C10-C36) TRH >C10 - C16 TRH >C10 - C16lexs Naphthalene (F2)	554 204 204	pg/L pg/L pg/L	350 <50 <50	540 170 170	450 <50 <50	350 53 53	130 <50 <50	1500	200 200	91 91	1700 120 120	<50 <50	1000 140 140	880 150 150	<50 <50 <50	330 140 140	91 91	590 94 94	300 110 110	<50 <50 <50	120 <50 <50	<50 <50	<50 <50	540 51 51
TRH >C16 - C34 TRH >C34 - C40 Total +ve TRH (>C10-C40)	TRH > C16 - C34 TRH > C34 - C40 Total +ve TRH (> C10-C40)	516 408 924	us/L µg/L µg/L	300 <100 300	410 <100 580	380 140 530	310 ×100 360	170 <100 170	1700	<100 1000	280 1200	1400 440 1900	170 <100 170	1000	660 ×100 810	<100 <100 <50	190 ×100 340	280 1700	430 110 630	250 <100 360	<100 <100 <50	160 <100 160	150 <100 150	210 <100 210	450 170 670
Naphthalene Acenaphthylene Acenaphthene	Naphthalene Acenaphthylene Acenaphthene	10 10	halr halr	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.2 <0.1 <0.1	0.3 0.2 k0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	K0.1 K0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Phonene Phonenhrene Anthricene Fisourchene	Fluorene Phenanthrene Anthracene Fluoranthene	10 0.72 1 0.48	pg/L pg/L pg/L	0.3 <0.1	<0.1 <0.1	0.2	<0.1 <0.1 <0.1	0.1 <0.1	0.2	0.2 <0.1	0.3 ×0.1	0.4	<0.1 <0.1	<0.1 <0.1	K0.1 K0.1	<0.1 <0.1	0.1 ×0.1	0.1	0.2 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	k0.1 k0.1
Pyrese Benzo(a)anthracene Chrysene	Pyrene Berzo(a)ambracene Chrysene	10 0.36 0.36	yg/L yg/L	0.6	<0.1 <0.1	0.4	<0.1 <0.1	0.2 <0.1	1.8	0.3	0.6 0.3	0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.2	0.2	0.4	<0.1 <0.1	0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	k0.1 k0.1
Benzo(b.j+k)fluoranthene Benzo(alovrene Indeno(1,2,3<,d)pyrene	Benzolajvrene Benzolajvrene Indeno[1,2,3-c,d]pyrene	0.5 0.36 0.24	pg/L us/L pg/L	0.5 0.3 0.2	<0.2 <0.1 <0.1	0.5 0.3 0.2	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	1 1 0.5	0.3 0.2 <0.1	0.5 0.3 0.2	0.7 0.4 0.3	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	0.3 0.2 <0.1	0.2 0.1 <0.1	0.5 0.3 0.2	<0.2 <0.1 <0.1	0.2 0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1
Dibenzo(a,h)anthracene Benzo(g,h,l)perylene Benzo(a)pyrene TEQ	Dibenzo(s,h)anthracene Benzo(g,h,i)perylene Benzo(s)pyrene TEQ	10 0.36 50	µg/L	<0.1 0.3 <0.5	<0.1 <0.1 <0.5	<0.1 0.2 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	0.1 0.9	<0.1 0.1 <0.5	<0.1 0.3 <0.5	<0.1 0.4 0.6	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	K0.1 0.1 K0.5	<0.1 0.1 <0.5	<0.1 0.3 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5	<0.1 <0.1 <0.5
Total +vePAH's Perfluorobutanesulfonic acid	Total +vePAH's Perflucrobutanesulfonic acid	3.72 0.156 0.168	pg/L pg/L	3.1 <0.01	<0.1 <0.01	2.7	<0.1 <0.01	0.52 <0.01	11 ×0.01	1.9	3.3 ×0.01	4.6 <0.01	<0.1 <0.01 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 0.1 0.12	0.1	0.1 0.11	3 0.02	<0.1 <0.01	1 <0.01	<0.1 <0.01	<0.1 <0.01	<0.1 0.05	<0.1 0.04
Perfluoropertanesuffonic acid Perfluorohexanesuffonic acid - PFHxS Perfluoroheptanesuffonic acid	Perfluoropentanesulfonic acid Perfluorohexanesulfonic acid - PFHxS Perfluorohextanesulfonic acid	0.96	µg/L	<0.01 <0.01	<0.01	<0.01	< 0.01 < 0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.79	0.76	0.81	0.13	0.03	< 0.01 < 0.01	<0.01 <0.01	<0.01	0.53	0.34
Perfluorocctaneauffonic acid PFOS Perfluorodecaneauffonic acid	Perfluoroctaneautionic acid PFOS Perfluorodecaneautionic acid Perfluorobutanoic acid	1.2 0.744	pg/L pg/L	0.01 <0.02	<0.01 <0.02	0.01 <0.02	0.03 <0.02	<0.01 <0.02	0.03 ×0.02	0.02 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.02	1.1 ×0.02	1 <0.02	0.17 <0.02	0.04 <0.02	<0.01 <0.02	k0.01 k0.02	<0.01 <0.02	0.74 <0.02	0.45 <0.02
Perfluorobutanoic acid Perfluorobentanoic acid Perfluorobentanoic acid Perfluorobentanoic acid	Perfluoropentanoic acid	0.036 0.048 0.216 0.036	µg/L	<0.02 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01	< 0.02 < 0.01 < 0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	0.02 0.14 0.02	0.03 0.15 0.02	0.03 0.15 0.03	<0.02 0.03 <0.01	<0.02 <0.01	<0.02 <0.01 <0.01	K0.02 K0.01	<0.02 <0.02 <0.01	0.03 0.1 0.01	<0.02 0.06 0.01
Perfluoroheptanoic acid Perfluoroctanoic acid PFOA Perfluorononanoic acid Perfluorodecanoic acid	Perfluorohyptanoic acid Perfluorootsanoic acid PFOA Perfluorootsanoic acid PFOA Perfluorootsanoic acid Perfluorodecanoic acid	0.036 0.072 0.1 0.2	µg/L	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	0.01 <0.01 <0.02	<0.01 <0.01 <0.02	0.04 <0.01 <0.02	0.04 <0.01 <0.02	0.03 <0.01 <0.02	0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	<0.01 <0.01 <0.02	0.03 <0.01 <0.02	0.02 <0.01 <0.02							
Perfluorodosanoic acid Perfluorodosanoic acid Perfluorododecanoic acid Perfluorododecanoic acid Perfluorododecanoic acid	Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorododecanoic acid Perfluorododecanoic acid	0.2 0.2 0.5 1	pg/L pg/L pg/L	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	к0.02 к0.05 к0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1	<0.02 <0.05 <0.1
Perfluorotetradecanoic acid 4:2 FTS 6:2 FTS	Perfluorotetradecanoic acid 4:2 FTS 6:2 FTS	5 0.1 0.744 0.2	halr halr halr	<0.5 <0.01 0.01	<0.5 <0.01 <0.01	<0.5 <0.01 <0.01	< 0.5 < 0.01 0.02	<0.5 <0.01 <0.01	K0.5 K0.01 0.04	<0.5 <0.01 <0.01	<0.5 <0.01 <0.01	<0.5 <0.01 <0.01	<0.5 <0.01 <0.01	<0.01 <0.01	<0.5 <0.01 0.02	k0.5 k0.01 k0.01	<0.5 <0.01 <0.01	<0.5 <0.01 <0.01	<0.5 <0.01 0.03						
8:2 FTS 10:2 FTS Perfluorocctane sulfonamide	8:2 FTS 10:2 FTS Perfluorocctane sulfonamide	1	us/L	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1 <0.05	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	×0.02 ×0.02 ×0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1 <0.05	K0.02 K0.02 K0.1	<0.02 <0.02 <0.1 <0.05	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1	<0.02 <0.02 <0.1 <0.05	<0.02 <0.02 <0.1 <0.05
N-Methyl perfluorooctane suffonamide N-Ethyl perfluorooctane suffonamide	N-Methyl perfluorooctane sulfonamide N-Ethyl perfluorooctanesulfonamide	0.5 1	hâ\r hâ\r	<0.05 <0.1	<0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.1	<0.05 <0.1	<0.05 <0.1 <0.05	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.05 <0.1	<0.1	<0.1
N-Me perfluorooctane suffonamid cethanol N-Ex perfluorooctane suffonamid cethanol	N-Me perfluorooctanesulfonamidoethanol N-Et perfluorooctanesulfonamidoethanol	0.5 5	µg/L µg/L	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.5	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.5
cethanol MePerfluorocctanesulf- amid parelle anid EtPerfluorocctanesulf-	MePerfluorooctanesulf-amid oacetic acid	0.2	pg/L	<0.5 <0.02	<0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.02	<0.02 <0.02	<0.02 <0.02	<0.5 <0.02	<0.5	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.02 <0.02	<0.02 <0.02
Total Positive PFHxS & PFOS Total Positive PFOA & PFOS	EtPerfluorooctane sulf-amid oscetic sold Total Positive PFNsS & PFOS Total Positive PFOA & PFOS	0.2 2.16 1.32	yg/L us/L yg/L	<0.02 0.01 0.01	<0.01 <0.01	<0.02 0.01 0.01	< 0.02 0.03 0.04	<0.02 <0.01 <0.01	<0.02 0.03 0.03	<0.02 0.02 0.02	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	1.4 0.63	1.8	1.8	+0.02 0.3 0.18	<0.02 0.07 0.04	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	<0.02 <0.01 <0.01	1.3	0.79
Total Positive PFAS Arsenic-Dissolved Boron-Dissolved	Total Positive PFAS Arsenic-Dissolved Boron-Dissolved	2.88 96 5160	yg/L yg/L	0.02 3 100	1 330	0.01 2 40	0.06 1 80	<0.01 <1 1500	0.03 2 100	d.02 3 670	0.01 3 890	<0.01 <1 1100	<0.01 <1 100	<0.01 <1 200	0.04 1 200	1.9 <1 680	2.4 <1 900	2.4 2 860	0.38 1 3S0	0.07 <1 200	0.02 1 3900	K0.01 1 100	<0.01 <1 <20	1.6 1 850	1 <1 500
Barium-Dissolved Bervillum-Dissolved Cadmium-Dissolved Chomium-Dissolved	Barium-Dissolved Bervilium-Dissolved Cadmium-Dissolved Chromium-Dissolved	432 1.2 0.48	pg/L pg/L us/L	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	72 <0.5 <0.1	<0.5 <0.1	<0.5 <0.1	110 <0.5 <0.1	74 ×0.5 ×0.1	<0.5 0.2	<0.5 0.1	40.5 0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1								
Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved Mercury-Dissolved	Chromium-Dissolved Copper-Dissolved Cobalt-Dissolved Mercury-Dissolved	44.4 1032 31.2 0.24	pg/L pg/L pg/L us/L	K1 K1	<1 1	<1 <1 <0.00	k1 k1	<1 <1 <1	k1 k1	<1 <1 <1	<1 <1 <0.05	<1 <1 <0.00	2 <1	5 K1	2 41	<1 5 <1 <0.05	K1 K1	<1 <1 <1	3	1 <1	7 <1 <0.05	k1 26	<1 <1 <0.05	1 <1	K1 K1
Marcury-Dissolved Manganese-Dissolved Molybdenum-Dissolved Nickel-Dissolved	Manganese-Dissolved Molybdenum-Dissolved Nirkel-Dissolved	0.24 1320 40.8 444	us/L µg/L µg/L us/L	56 9	220	66	200	54 18	100	78 61	130	68	66	140	110 34	41 26	63	95 19	110	41	7 11 2	420 41 28	<5 1	44 15	100
Lead-Dissolved Antimony-Dissolved Solonium-Dissolved	Nickel-Dissolved Lead-Dissolved Antimony-Dissolved Selenium-Dissolved	180 4.5 1.2	pg/L pg/L pg/L	k1 3 k1	<1 2 <1	<1 2	<1 2 <1	<1 2 <1	<1 3 <1	<1 9 <1	k1 2 k1	<1 2 <1	<1 2 <1	<1 1 <1	<1 2 <1	<1 2 <1	ki ki	<1 <1 <1	<1 2 <1	d	ki ki	2 <1	(1 (1	<1 <1	K1 3 K1
Tin-Dissolved Zinc-Dissolved Zinc-Dissolved Iron-Dissolved	Selenium-Dissolved Tin-Dissolved Zinc-Dissolved Iron-Dissolved	2.4 344.4 396000	pg/L pg/L us/L	<1 3 <10	<1 1 40	<1 3 <10	<1 2 10	<1 <1 20	<1 3 <10	<1 <1 10	<1 <1 20	<1 <1 20	<1 5 40	<1 38 20	<1 2 <10	<1 2 <10	<1 1 10	<1 2 1200	<1 3 <10	<1 6 <10	<1 28 <10	K1 160	<1 13 <10	<1 2 30	<1 4 <10
Aron-Dissolved Arsenic-Total Boron-Total Barium-Total	Arsenic-Total Boron-Total Barium-Total	504 5160 15600	us/L µg/L	30 100 740	21 360 850	12 60 380	7 80 180	19 1600 920	99 100 3000	340 1000 9500	50 1000 1500	28 1200 1100	2 100 67	6 200 180	10 200 190	35 1000 330	32 970 1200	47 1200 1100	25 310 620	3 200 97	6 4000 67	420 200 13000	<1 <20 94	5 800 180	13 580 1000
Beryllium-Total Cadmium-Total Chromium-Total	Beryllium-Total Cadmium-Total Chromium-Total	55 32.4 492	yg/L yg/L	5 1 110	5 1.3 110	1 0.5 38	0.2 23	7 1.6 140	16 5 400	52 15 1800	4 2.3 190	5 1.7 170	<0.5 <0.1 S	0.7 <0.1 15	0.1 25	0.2 34	5 1.6 150	1.8 200	3 0.8 67	<0.5 0.1 9	<0.5 0.1 11	55 27 410	<0.5 <0.1 25	0.5 0.2 23	3 0.4 52
Copper-Total Cobalt-Total Mercury-Total	Copper-Total Cobalt-Total Mercury-Total	1140 684 1.044	yg/L yg/L	280 35 0.5	260 41 0.51	110 15 <0.05	67 9 0.06	340 48 0.4	1100 160 2.8	3800 560 5	560 79 <0.05	440 56 <0.1	19 <1 <0.05	51 7 ×0.05	59 8 ×0.05	71 7 0.2	350 48 ×0.05	320 48 <0.05	130 27 ×0.05	26 3 <0.05	59 2 0.2	720 570 k0.05	15 1 <0.05	38 5 <0.05	180 25 <0.05
Manganese-Total Molybdenum-Total Nickel-Total Lead-Total	Manganese-Total Molybdenum-Total Nickel-Total	9960 105.6 612	yg/L yg/L us/L	1300 9 70	1900 13 75	900 4 26	460 20 22	1800 21 90	7100 13 270	23000 220 870	3300 66 130	2400 18 95	120 2 2	310 8 11	500 31 13	220 26 16	2000 14 88	2200 25 96	1500 13 44	170 3 6	130 12 6	8300 88 510	48 <1 2	200 9 10	1500 23 38
Antimony-Total	Lead-Total Antimony-Total Selenium-Total Tin-Total	21600 2.5 3.5	yg/L yg/L yg/L	260 7 1	190 5 1	87 4 <1	40 4 <1	270 6 2	1200 10 3	2400 19 11	400 9 2	290 6 1	4 3 <1	17 3 <1	22 6 <1	52 4 2	330 3 3	380 4 3	180 4 <1	13 2 <1	39 1 <1	18000 2 3	15 4 <1	37 1 <1	63 6 <1
Tin-Total Zinc-Total Iron-Total	Tin-Total Zinc-Total Iron-Total	26.4 6000 648000	µg/L µg/L	10 1700 83000	1500 71000	3 920 26000	2 570 13000	16 1900 100000	7400 200000	300 29000 1100000	3300 150000	17 3500 120000	1 95 2500	1 340 14000	2 540 20000	5 170 100000	7 1300 110000	19 1400 180000	10 810 68000	170 6400	3 97 7500	3 5000 540000	<1 84 1700	<1 170 22000	910 66000
									_					_				_	_	_				_	

Groundwater Monitoring Program Management Response

Sydney Olympic Park

North Strathfield

The Bays

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 359072

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	CTP Groundwater Monitoring
Number of Samples	2 Water
Date samples received	13/08/2024
Date completed instructions received	13/08/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	20/08/2024
Date of Issue	20/08/2024
NATA Accreditation Number 2901. The	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

VOCs in water			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date Extracted	-	14/08/2024	14/08/2024
Date Analysed	-	15/08/2024	15/08/2024
Dichlorodifluoromethane	μg/L	<10	<10
Chloromethane	μg/L	<10	<10
Vinyl Chloride	μg/L	<10	<10
Bromomethane	μg/L	<10	<10
Chloroethane	μg/L	<10	<10
Trichlorofluoromethane	μg/L	<10	<10
1,1-Dichloroethene	μg/L	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	μg/L	<1	<1
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	μg/L	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1
1,1-dichloropropene	μg/L	<1	<1
Cyclohexane	μg/L	<1	<1
Carbon tetrachloride	μg/L	<1	<1
Benzene	μg/L	<1	<1
Dibromomethane	μg/L	<1	<1
1,2-dichloropropane	μg/L	<1	<1
Trichloroethene	μg/L	<1	<1
Bromodichloromethane	μg/L	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1
Toluene	μg/L	<1	<1
1,3-dichloropropane	μg/L	<1	<1
Dibromochloromethane	μg/L	<1	<1
1,2-dibromoethane	μg/L	<1	<1
Tetrachloroethene	μg/L	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1
Chlorobenzene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1

VOCs in water			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	μg/L	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1
Isopropylbenzene	μg/L	<1	<1
Bromobenzene	μg/L	<1	<1
n-propyl benzene	μg/L	<1	<1
2-chlorotoluene	μg/L	<1	<1
4-chlorotoluene	μg/L	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1
Tert-butyl benzene	μg/L	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1
Sec-butyl benzene	μg/L	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1
n-butyl benzene	μg/L	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1
Hexachlorobutadiene	μg/L	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	99	99
Surrogate Toluene-d8	%	96	96
Surrogate 4-Bromofluorobenzene	%	95	94

vTRH(C6-C10)/BTEXN in Water			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date extracted	-	14/08/2024	14/08/2024
Date analysed	-	15/08/2024	15/08/2024
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	99	99
Surrogate Toluene-d8	%	96	96
Surrogate 4-Bromofluorobenzene	%	95	94

svTRH (C10-C40) in Water			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date extracted	-	14/08/2024	14/08/2024
Date analysed	-	15/08/2024	15/08/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50
TRH >C10 - C16	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50
Surrogate o-Terphenyl	%	100	100

PAHs in Water			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date extracted	-	14/08/2024	14/08/2024
Date analysed	-	15/08/2024	15/08/2024
Naphthalene	μg/L	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	99	96

All metals in water-dissolved			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	15/08/2024	15/08/2024
Date analysed	-	15/08/2024	15/08/2024
Arsenic-Dissolved	μg/L	3	<1
Boron-Dissolved	μg/L	70	50
Barium-Dissolved	μg/L	31	28
Beryllium-Dissolved	μg/L	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	79	15
Cobalt-Dissolved	μg/L	16	2
Mercury-Dissolved	μg/L	<0.05	<0.05
Manganese-Dissolved	μg/L	290	680
Molybdenum-Dissolved	μg/L	8	1
Nickel-Dissolved	μg/L	40	3
Lead-Dissolved	μg/L	<1	<1
Antimony-Dissolved	μg/L	1	<1
Selenium-Dissolved	μg/L	2	<1
Tin-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	4	33
Iron-Dissolved	μg/L	<10	50

All metals in water - total			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	14/08/2024	14/08/2024
Date analysed	-	16/08/2024	16/08/2024
Arsenic-Total	μg/L	27	<1
Boron-Total	μg/L	100	80
Barium-Total	μg/L	170	31
Beryllium-Total	μg/L	3	<0.5
Cadmium-Total	μg/L	0.2	<0.1
Chromium-Total	μg/L	17	2
Copper-Total	μg/L	1,600	20
Cobalt-Total	μg/L	39	14
Mercury-Total	μg/L	<0.05	<0.05
Manganese-Total	μg/L	750	5,100
Molybdenum-Total	μg/L	10	1
Nickel-Total	μg/L	80	11
Lead-Total	μg/L	30	<1
Antimony-Total	μg/L	1	<1
Selenium-Total	μg/L	2	<1
Tin-Total	μg/L	<1	<1
Zinc-Total	μg/L	120	63
Iron-Total	μg/L	19,000	640

Envirolab Reference: 359072

Revision No: R00

Metals in Waters - Total			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	14/08/2024	14/08/2024
Date analysed	-	15/08/2024	15/08/2024
Phosphorus - Total	mg/L	0.3	0.4

Miscellaneous Inorganics			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	13/08/2024	13/08/2024
Date analysed	-	13/08/2024	13/08/2024
Ammonia as N in water	mg/L	0.006	5.8
Nitrate as N in water	mg/L	0.81	6.4
Total Nitrogen in water	mg/L	1.0	14

Ion Balance			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	13/08/2024	13/08/2024
Date analysed	-	13/08/2024	13/08/2024
Calcium - Dissolved	mg/L	88	29
Potassium - Dissolved	mg/L	24	5.7
Sodium - Dissolved	mg/L	1,100	95
Magnesium - Dissolved	mg/L	130	5
Hardness (calc) equivalent CaCO ₃	mg/L	740	94
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	700	110
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5
Total Alkalinity as CaCO₃	mg/L	700	110
Sulphate, SO4	mg/L	420	120
Chloride, Cl	mg/L	1,700	72
Ionic Balance	%	-4.0	-5.0

PFAS in Waters Extended			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	14/08/2024	14/08/2024
Date analysed	-	14/08/2024	14/08/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	102	103
Surrogate ¹³ C ₂ PFOA	%	99	99
Extracted ISTD 13 C3 PFBS	%	101	92
Extracted ISTD 18 O ₂ PFHxS	%	99	96
Extracted ISTD 13 C4 PFOS	%	93	91
Extracted ISTD 13 C4 PFBA	%	87	83

PFAS in Waters Extended			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Extracted ISTD ¹³ C ₃ PFPeA	%	93	100
Extracted ISTD 13 C2 PFHxA	%	100	104
Extracted ISTD 13 C ₄ PFHpA	%	98	104
Extracted ISTD 13 C ₄ PFOA	%	95	100
Extracted ISTD ¹³ C ₅ PFNA	%	98	99
Extracted ISTD ¹³ C ₂ PFDA	%	101	108
Extracted ISTD ¹³ C ₂ PFUnDA	%	99	105
Extracted ISTD 13 C2 PFDoDA	%	93	101
Extracted ISTD ¹³ C ₂ PFTeDA	%	69	71
Extracted ISTD ¹³ C ₂ 4:2FTS	%	74	119
Extracted ISTD ¹³ C ₂ 6:2FTS	%	68	119
Extracted ISTD ¹³ C ₂ 8:2FTS	%	86	132
Extracted ISTD ¹³ C ₈ FOSA	%	105	100
Extracted ISTD d ₃ N MeFOSA	%	95	95
Extracted ISTD d ₅ N EtFOSA	%	93	92
Extracted ISTD d ₇ N MeFOSE	%	97	98
Extracted ISTD d ₉ N EtFOSE	%	91	89
Extracted ISTD d ₃ N MeFOSAA	%	84	101
Extracted ISTD ds N EtFOSAA	%	90	112
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01
Total Positive PFAS	μg/L	<0.01	<0.01

Dissolved Gases in Water			
Our Reference		359072-1	359072-2
Your Reference	UNITS	BH046R	BH051
Date Sampled		12/08/2024	12/08/2024
Type of sample		Water	Water
Date prepared	-	16/08/2024	16/08/2024
Date analysed	-	16/08/2024	16/08/2024
Methane	μg/L	<5	<5

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID based on draft method USEPA SOP RSK175
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL	.: VOCs i	n water			Du	ıplicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date Extracted	-			14/08/2024	[NT]		[NT]	[NT]	14/08/2024	
Date Analysed	-			15/08/2024	[NT]		[NT]	[NT]	15/08/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	106	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	106	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	113	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	111	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTROI	_: VOCs ii	n water			Dι	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	97	[NT]		[NT]	[NT]	99	
Surrogate Toluene-d8	%		Org-023	97	[NT]		[NT]	[NT]	98	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	[NT]		[NT]	[NT]	101	

QUALITY CONTR	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	ıplicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			14/08/2024	[NT]		[NT]	[NT]	14/08/2024	
Date analysed	-			15/08/2024	[NT]		[NT]	[NT]	15/08/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	111	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	97	[NT]		[NT]	[NT]	99	
Surrogate Toluene-d8	%		Org-023	97	[NT]		[NT]	[NT]	98	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	[NT]		[NT]	[NT]	101	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			14/08/2024	1	14/08/2024	14/08/2024		14/08/2024	
Date analysed	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	118	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	115	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	114	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	118	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	115	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	114	
Surrogate o-Terphenyl	%		Org-020	88	1	100	113	12	84	

QUALIT	TY CONTROL	: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	359072-2
Date extracted	-			14/08/2024	1	14/08/2024	14/08/2024		14/08/2024	14/08/2024
Date analysed	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	15/08/2024
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	65	84
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	75	83
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	88
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	90
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	90
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	70	90
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	75	75
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	64	84
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	77	1	99	100	1	82	110

QUALITY CC	NTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	
Date analysed	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	3	[NT]		94	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	70	[NT]		102	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	31	[NT]		104	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	[NT]		102	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		102	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		102	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	79	[NT]		99	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	16	[NT]		100	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	118	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	290	[NT]		102	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	8	[NT]		99	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	40	[NT]		101	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		98	
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	1	[NT]		93	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	2	[NT]		95	
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		107	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	4	[NT]		101	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	[NT]		98	

Envirolab Reference: 359072

QUALITY CO	ONTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date prepared	-			14/08/2024	1	14/08/2024	14/08/2024		14/08/2024	
Date analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	
Arsenic-Total	μg/L	1	Metals-022	<1	1	27	[NT]		96	
Boron-Total	μg/L	20	Metals-022	<20	1	100	[NT]		118	
Barium-Total	μg/L	1	Metals-022	<1	1	170	[NT]		99	
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	3	[NT]		108	
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	0.2	[NT]		98	
Chromium-Total	μg/L	1	Metals-022	<1	1	17	[NT]		112	
Copper-Total	μg/L	1	Metals-022	<1	1	1600	[NT]		110	
Cobalt-Total	μg/L	1	Metals-022	<1	1	39	[NT]		107	
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	118	
Manganese-Total	μg/L	5	Metals-022	<5	1	750	[NT]		105	
Molybdenum-Total	μg/L	1	Metals-022	<1	1	10	[NT]		103	
Nickel-Total	μg/L	1	Metals-022	<1	1	80	[NT]		110	
Lead-Total	μg/L	1	Metals-022	<1	1	30	[NT]		104	
Antimony-Total	μg/L	1	Metals-022	<1	1	1	[NT]		109	
Selenium-Total	μg/L	1	Metals-022	<1	1	2	[NT]		98	
Tin-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		98	
Zinc-Total	μg/L	1	Metals-022	<1	1	120	[NT]		106	
Iron-Total	μg/L	10	Metals-022	<10	1	19000	[NT]		110	

Envirolab Reference: 359072

QUALITY CC	NTROL: Me	tals in Wa	aters - Total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359072-2
Date prepared	-			14/08/2024	1	14/08/2024	14/08/2024		14/08/2024	14/08/2024
Date analysed	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	15/08/2024
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	0.3	0.2	40	100	123

Envirolab Reference: 359072

QUALITY COI	prepared - 13/08/ panalysed - 13/08/					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			13/08/2024	1	13/08/2024	13/08/2024		13/08/2024	[NT]
Date analysed	-			13/08/2024	1	13/08/2024	13/08/2024		13/08/2024	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.006	[NT]		97	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.81	[NT]		93	[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	1.0	1.0	0	113	[NT]

Envirolab Reference: 359072

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359072-1
Date prepared	-			13/08/2024	1	13/08/2024	13/08/2024		13/08/2024	13/08/2024
Date analysed	-			13/08/2024	1	13/08/2024	13/08/2024		13/08/2024	13/08/2024
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	88	86	2	113	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	24	24	0	103	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1100	1200	9	93	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	130	120	8	113	[NT]
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	1	740	720	3	[NT]	[NT]
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	700	[NT]		[NT]	[NT]
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	700	[NT]		116	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	420	[NT]		114	#
Chloride, Cl	mg/L	1	Inorg-081	<1	1	1700	[NT]		107	#
Ionic Balance	%		Inorg-040	[NT]	1	-4.0	[NT]		[NT]	[NT]

QUALITY CON	ITROL: PFA	S in Wate	ers Extended			Dι	uplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			14/08/2024	[NT]		[NT]	[NT]	14/08/2024	
Date analysed	-			14/08/2024	[NT]		[NT]	[NT]	14/08/2024	
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	99	
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	103	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	102	
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	104	
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	103	
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	108	
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	100	
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	100	
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	96	
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	99	
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	101	
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	100	
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	93	
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	95	
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	103	
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	124	
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	98	
4:2 FTS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	100	
6:2 FTS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	106	
8:2 FTS	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	112	
10:2 FTS	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	117	
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	99	
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	104	
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	97	
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	109	
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	104	
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	109	
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	103	
Surrogate ¹³ C ₈ PFOS	%		Org-029	95	[NT]		[NT]	[NT]	101	
Surrogate ¹³ C ₂ PFOA	%		Org-029	100	[NT]		[NT]	[NT]	102	

QUALITY COI	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	98	[NT]		[NT]	[NT]	103	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	103	[NT]		[NT]	[NT]	98	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	102	[NT]		[NT]	[NT]	94	
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	108	[NT]		[NT]	[NT]	106	
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	105	[NT]		[NT]	[NT]	99	
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	108	[NT]		[NT]	[NT]	105	
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	110	[NT]		[NT]	[NT]	103	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	107	[NT]		[NT]	[NT]	101	
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	106	[NT]		[NT]	[NT]	103	
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	125	[NT]		[NT]	[NT]	122	
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	128	[NT]		[NT]	[NT]	120	
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	109	[NT]		[NT]	[NT]	102	
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	87	[NT]		[NT]	[NT]	83	
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	119	[NT]		[NT]	[NT]	107	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	111	[NT]		[NT]	[NT]	108	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	133	[NT]		[NT]	[NT]	115	
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	111	[NT]		[NT]	[NT]	101	
Extracted ISTD d ₃ N MeFOSA	%		Org-029	108	[NT]		[NT]	[NT]	100	
Extracted ISTD d ₅ N EtFOSA	%		Org-029	107	[NT]		[NT]	[NT]	101	
Extracted ISTD d ₇ N MeFOSE	%		Org-029	109	[NT]		[NT]	[NT]	105	

QUALITY CON		Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	103	[NT]		[NT]	[NT]	100	
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	109	[NT]		[NT]	[NT]	110	
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	118	[NT]	[NT]	[NT]	[NT]	117	[NT]

Revision No: R00

Envirolab Reference: 359072

QUALITY CONTROL: Dissolved Gases in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	[NT]
Date analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	[NT]
Methane	μg/L	5	AT-006	<5	1	<5	<5	0	89	[NT]

Envirolab Reference: 359072

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 359072

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 359072 Page | 32 of 33 Revision No: R00

Report Comments

ION_BALANCE:# Percent recovery is not applicable due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 359072

Revision No: R00

Page | 33 of 33

Envirolab Services Pty Ltd
ABN 37 112 535 645
nlev St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 359252

Client Attention	
Attention	
Address	

Sample Details	
Your Reference	CTP Groundwater Monitoring
Number of Samples	5 Water
Date samples received	14/08/2024
Date completed instructions received	15/08/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	22/08/2024					
Date of Issue	22/08/2024					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/II	EC 17025 - Testing. Tests not covered by NATA are denoted with *					

VOCs in water						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date Extracted	-	15/08/2024	15/08/2024	15/08/2024	15/08/2024	15/08/2024
Date Analysed	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	104	99	98	101	97
Surrogate Toluene-d8	%	95	99	99	98	95
Surrogate 4-Bromofluorobenzene	%	94	94	95	96	91

vTRH(C6-C10)/BTEXN in Water						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	15/08/2024	15/08/2024	15/08/2024	15/08/2024	15/08/2024
Date analysed	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	104	99	98	101	97
Surrogate Toluene-d8	%	95	99	99	98	95
Surrogate 4-Bromofluorobenzene	%	94	94	95	96	91

svTRH (C10-C40) in Water						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Date analysed	-	17/08/2024	17/08/2024	17/08/2024	17/08/2024	17/08/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	160	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	150	<100	<100	<100	110
Total +ve TRH (C10-C36)	μg/L	320	<50	<50	<50	110
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	290	<100	<100	<100	170
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	290	<50	<50	<50	170
Surrogate o-Terphenyl	%	75	88	89	80	89

PAHs in Water						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Date analysed	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.8	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	0.3	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	0.4	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	1.7	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	1.8	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	1.2	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	1.0	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	3.8	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	3.0	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	2.0	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	0.6	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	3.0	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	4.4	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	20	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	69	76	75	72	73

Envirolab Reference: 359252

Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Date analysed	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Boron-Dissolved	μg/L	50	<20	60	80	90
Barium-Dissolved	μg/L	23	40	1,900	16	60
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	0.6	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	0.2	0.2
Chromium-Dissolved	μg/L	2	1	1 <1		<1
Copper-Dissolved	μg/L	6	3	2	4	3
Cobalt-Dissolved	μg/L	<1	<1	1	20	52
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	<5	<5	190	1,200	3,400
Molybdenum-Dissolved	μg/L	3	2	1	<1	<1
Nickel-Dissolved	μg/L	<1	<1	6	19	24
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Antimony-Dissolved	μg/L	<1	1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	1	<1	<1
Zinc-Dissolved	μg/L	4	<1	10	210	57
Iron-Dissolved	μg/L	<10	<10	<10	300	<10

Envirolab Reference: 359252

All metals in water - total						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/08/2024	19/08/2024	19/08/2024	19/08/2024	19/08/2024
Date analysed	-	19/08/2024	19/08/2024	19/08/2024	19/08/2024	19/08/2024
Arsenic-Total	μg/L	<1	<1	<1	6	14
Boron-Total	μg/L	50	<20	60	70	80
Barium-Total	μg/L	30	49	2,800	120	1,800
Beryllium-Total	μg/L	<0.5	<0.5	<0.5	6	4
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	0.3	0.9
Chromium-Total	μg/L	4	2	28	15	20
Copper-Total	μg/L	15	4	5	87	120
Cobalt-Total	μg/L	<1	<1	1	32	180
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	0.3
Manganese-Total	μg/L	22	9	200	1,300	6,000
Molybdenum-Total	μg/L	4	3	3	<1	1
Nickel-Total	μg/L	3	2	17	37	63
Lead-Total	μg/L	3	<1	1	20	52
Antimony-Total	μg/L	1	2	<1	<1	<1
Selenium-Total	μg/L	<1	<1	<1	<1	1
Tin-Total	μg/L	1	<1	1	1	1
Zinc-Total	μg/L	25	7	17	390	470
Iron-Total	μg/L	590	150	860	20,000	26,000

Envirolab Reference: 359252

Metals in Waters - Total						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/08/2024	19/08/2024	19/08/2024	19/08/2024	19/08/2024
Date analysed	-	20/08/2024	20/08/2024	20/08/2024	20/08/2024	20/08/2024
Phosphorus - Total	mg/L	0.08	<0.05	<0.05	0.73	0.95

Miscellaneous Inorganics						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/08/2024	15/08/2024	15/08/2024	15/08/2024	15/08/2024
Date analysed	-	15/08/2024	15/08/2024	15/08/2024	15/08/2024	15/08/2024
Ammonia as N in water	mg/L	<0.005	<0.005	1.4	0.065	0.071
Nitrate as N in water	mg/L	0.42	0.61	2.6	0.02	0.11
Total Nitrogen in water	mg/L	0.7	0.7	4.4	0.4	0.7

Ion Balance						
Our Reference		359252-1 359252		359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/08/2024	19/08/2024	19/08/2024	19/08/2024	19/08/2024
Date analysed	-	19/08/2024	19/08/2024	19/08/2024	19/08/2024	19/08/2024
Calcium - Dissolved	mg/L	82	110	480	13	76
Potassium - Dissolved	mg/L	4	3	43	5	6.7
Sodium - Dissolved	mg/L	41	19	1,900	440	140
Magnesium - Dissolved	mg/L	3	2	340	15	22
Hardness (calc) equivalent CaCO₃	mg/L	220	280	2,600	93	280
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	68	42	600	61	110
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	68	42	600	61	110
Sulphate, SO4	mg/L	180	220	33	350	210
Chloride, Cl	mg/L	48	33	4,400	390	170
Ionic Balance	%	-1.0	2.0	-1.0	4.0	2.0

PFAS in Waters Extended						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water Water		Water	Water	Water
Date prepared	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Date analysed	-	16/08/2024	16/08/2024	16/08/2024	16/08/2024	16/08/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01	<0.01	<0.01	0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01	<0.01	<0.01	0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01	<0.01	0.03	0.03
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01	<0.01	0.01	0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	<0.01	<0.01	<0.01	0.02
Perfluoroheptanoic acid	μg/L	<0.01	<0.01	<0.01	<0.01	0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	<0.01	0.01	0.04
Perfluorononanoic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	106	105	100	102	103
Surrogate ¹³ C ₂ PFOA	%	102	98	96	104	97
Extracted ISTD 13 C ₃ PFBS	%	94	108	109	104	103
Extracted ISTD 18 O ₂ PFHxS	%	87	88	104	106	104
Extracted ISTD 13 C4 PFOS	%	83	91	110	106	105
Extracted ISTD 13 C4 PFBA	%	85	96	99	65	94

PFAS in Waters Extended						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	111	112	102	102	102
Extracted ISTD 13 C2 PFHxA	%	110	116	107	104	103
Extracted ISTD 13 C4 PFHpA	%	91	100	105	107	105
Extracted ISTD 13 C ₄ PFOA	%	98	103	113	110	110
Extracted ISTD 13 C ₅ PFNA	%	99	105	114	110	110
Extracted ISTD 13 C ₂ PFDA	%	92	98	110	112	108
Extracted ISTD 13 C2 PFUnDA	%	115	120	117	122	117
Extracted ISTD 13 C2 PFDoDA	%	93	98	110	112	109
Extracted ISTD 13 C2 PFTeDA	%	87	85	89	92	96
Extracted ISTD 13 C2 4:2FTS	%	120	123	84	103	103
Extracted ISTD 13 C2 6:2FTS	%	120	122	94	113	108
Extracted ISTD 13 C2 8:2FTS	%	121	116	103	123	114
Extracted ISTD 13 C8 FOSA	%	93	100	111	113	109
Extracted ISTD d ₃ N MeFOSA	%	98	101	107	107	108
Extracted ISTD d₅ N EtFOSA	%	91	95	101	105	102
Extracted ISTD d ₇ N MeFOSE	%	91	86	85	95	88
Extracted ISTD d ₉ N EtFOSE	%	96	103	102	106	106
Extracted ISTD d ₃ N MeFOSAA	%	114	120	108	120	112
Extracted ISTD d₅ N EtFOSAA	%	105	111	103	113	110
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01	<0.01	0.05	0.04
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01	<0.01	0.03	0.05
Total Positive PFAS	μg/L	<0.01	<0.01	<0.01	0.06	0.14

Envirolab Reference: 359252

Dissolved Gases in Water						
Our Reference		359252-1	359252-2	359252-3	359252-4	359252-5
Your Reference	UNITS	BH044	BH038	BH035d	BH035s	BH009s
Date Sampled		13/08/2024	13/08/2024	13/08/2024	13/08/2024	13/08/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/08/2024	20/08/2024	20/08/2024	20/08/2024	20/08/2024
Date analysed	-	20/08/2024	20/08/2024	20/08/2024	20/08/2024	20/08/2024
Methane	μg/L	<5	<5	180	<5	120

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID based on draft method USEPA SOP RSK175
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 359252

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date Extracted	-			15/08/2024	1	15/08/2024	16/08/2024		15/08/2024	
Date Analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Bromomethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloroethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	96	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	1	<1	<1	0	96	
2,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	94	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	92	
1,1-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	97	
Dibromomethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	95	
Bromodichloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	89	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	96	
1,3-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	99	
1,2-dibromoethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	95	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
Bromoform	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	99	
Styrene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	

QUALIT	Y CONTROL	.: VOCs i	n water			Dι		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Sec-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-isopropyl toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	1	104	95	9	100	
Surrogate Toluene-d8	%		Org-023	96	1	95	102	7	98	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	1	94	96	2	102	

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			15/08/2024	1	15/08/2024	16/08/2024		15/08/2024	
Date analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	98	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	98	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	97	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	96	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	99	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	1	104	95	9	100	
Surrogate Toluene-d8	%		Org-023	96	1	95	102	7	98	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	1	94	96	2	102	

Date extracted - 16/0 Date analysed - 17/0 TRH C ₁₀ - C ₁₄ μg/L 50 Org-020 < TRH C ₁₅ - C ₂₈ μg/L 100 Org-020 <						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-2
Date extracted	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Date analysed	-			17/08/2024	1	17/08/2024	17/08/2024		17/08/2024	17/08/2024
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	98	111
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	160	210	27	98	115
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	150	200	29	86	108
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	98	111
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	290	370	24	98	115
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	86	108
Surrogate o-Terphenyl	%		Org-020	85	1	75	87	15	99	116

QUAL	ITY CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-2
Date extracted	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Date analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	73	76
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	0.8	1.2	40	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	74
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	70	80
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	0.3	0.4	29	71	74
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	0.4	0.5	22	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	1.7	2.3	30	65	70
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	1.8	2.3	24	60	67
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	1.2	1.6	29	[NT]	[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	1.0	1.4	33	65	69
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	3.8	5.4	35	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	3.0	4.3	36	66	86
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	2.0	2.8	33	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	0.6	0.8	29	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	3.0	4.0	29	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	82	1	69	74	7	79	74

QUALITY CON	NTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	359252-3
Date prepared	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Date analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		99	100
Boron-Dissolved	μg/L	20	Metals-022	<20	1	50	[NT]		103	99
Barium-Dissolved	μg/L	1	Metals-022	<1	1	23	[NT]		103	#
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	[NT]		101	97
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		98	101
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	2	[NT]		106	107
Copper-Dissolved	μg/L	1	Metals-022	<1	1	6	[NT]		103	101
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		102	105
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	117	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	<5	[NT]		106	100
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	3	[NT]		98	106
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		103	104
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		108	92
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		98	83
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		111	94
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		100	106
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	4	[NT]		104	98
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	[NT]		100	105

Envirolab Reference: 359252

QUALITY C	ONTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	2	16/08/2024	16/08/2024			[NT]
Date analysed	-			[NT]	2	16/08/2024	16/08/2024			[NT]
Arsenic-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Boron-Dissolved	μg/L	20	Metals-022	[NT]	2	<20	<20	0		[NT]
Barium-Dissolved	μg/L	1	Metals-022	[NT]	2	40	43	7		[NT]
Beryllium-Dissolved	μg/L	0.5	Metals-022	[NT]	2	<0.5	<0.5	0		[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	[NT]	2	<0.1	<0.1	0		[NT]
Chromium-Dissolved	μg/L	1	Metals-022	[NT]	2	1	1	0		[NT]
Copper-Dissolved	μg/L	1	Metals-022	[NT]	2	3	3	0		[NT]
Cobalt-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	[NT]	2	<0.05	[NT]			[NT]
Manganese-Dissolved	μg/L	5	Metals-022	[NT]	2	<5	<5	0		[NT]
Molybdenum-Dissolved	μg/L	1	Metals-022	[NT]	2	2	2	0		[NT]
Nickel-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Lead-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Antimony-Dissolved	μg/L	1	Metals-022	[NT]	2	1	1	0		[NT]
Selenium-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Tin-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Zinc-Dissolved	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Iron-Dissolved	μg/L	10	Metals-022	[NT]	2	<10	<10	0		[NT]

Envirolab Reference: 359252

QUALITY CO	NTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-3
Date prepared	-			19/08/2024	1	19/08/2024	19/08/2024		19/08/2024	19/08/2024
Date analysed	-			19/08/2024	1	19/08/2024	19/08/2024		20/08/2024	19/08/2024
Arsenic-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	97	97
Boron-Total	μg/L	20	Metals-022	<20	1	50	50	0	93	85
Barium-Total	μg/L	1	Metals-022	<1	1	30	29	3	99	#
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	90	92
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	96	100
Chromium-Total	μg/L	1	Metals-022	<1	1	4	4	0	98	90
Copper-Total	μg/L	1	Metals-022	<1	1	15	15	0	104	102
Cobalt-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	99	106
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	100	[NT]
Manganese-Total	μg/L	5	Metals-022	<5	1	22	21	5	96	89
Molybdenum-Total	μg/L	1	Metals-022	<1	1	4	3	29	96	103
Nickel-Total	μg/L	1	Metals-022	<1	1	3	3	0	97	88
Lead-Total	μg/L	1	Metals-022	<1	1	3	3	0	99	93
Antimony-Total	μg/L	1	Metals-022	<1	1	1	1	0	96	102
Selenium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	93	88
Tin-Total	μg/L	1	Metals-022	<1	1	1	1	0	99	106
Zinc-Total	μg/L	1	Metals-022	<1	1	25	25	0	99	101
Iron-Total	μg/L	10	Metals-022	<10	1	590	590	0	95	#

Envirolab Reference: 359252

QUALITY CO	NTROL: Me	tals in Wa	aters - Total			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-2
Date prepared	-			19/08/2024	1	19/08/2024	19/08/2024		19/08/2024	19/08/2024
Date analysed	-			20/08/2024	1	20/08/2024	20/08/2024		20/08/2024	20/08/2024
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	0.08	0.09	12	107	103

Envirolab Reference: 359252

QUALITY CO	prepared - 15/0 analysed - 15/0					Duplicate Spike					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date prepared	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	[NT]	
Date analysed	-			15/08/2024	1	15/08/2024	15/08/2024		15/08/2024	[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	<0.005	<0.005	0	89	[NT]	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.42	0.42	0	96	[NT]	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.7	0.7	0	112	[NT]	

Envirolab Reference: 359252

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			19/08/2024	1	19/08/2024	19/08/2024		19/08/2024	
Date analysed	-			19/08/2024	1	19/08/2024	19/08/2024		19/08/2024	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	82	[NT]		101	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	4	[NT]		95	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	41	[NT]		85	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	3	[NT]		101	
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	1	220	[NT]		[NT]	
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	68	[NT]		[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	68	[NT]		104	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	180	170	6	115	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	48	48	0	98	
Ionic Balance	%		Inorg-040	[NT]	1	-1.0	[NT]		[NT]	

QUALI ⁻	TY CONTRO	L: Ion Ba	alance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	2	19/08/2024	19/08/2024			[NT]
Date analysed	-			[NT]	2	19/08/2024	19/08/2024			[NT]
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	110	110	0		[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	3	3	0		[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	19	18	5		[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	2	3	40		[NT]
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	2	280	290	4		[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	<5	[NT]			[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	42	[NT]			[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	<5	[NT]			[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	42	[NT]			[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	2	220	[NT]			[NT]
Chloride, Cl	mg/L	1	Inorg-081	[NT]	2	33	[NT]			[NT]
Ionic Balance	%		Inorg-040	[NT]	2	2.0	[NT]			[NT]

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-2
Date prepared	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Date analysed	-			16/08/2024	1	16/08/2024	16/08/2024		16/08/2024	16/08/2024
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	105	101
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	114	105
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	108	108
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	113	116
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	101	100
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	113	95
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	106	97
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	99	100
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	95	99
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	107	110
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	105	100
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	110	104
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	122	115
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	109	104
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	101	107
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	100	73
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	113	118
4:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	105	108
6:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	102	103
8:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	99	109
10:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	108	102
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	105	102
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	112	106
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	105	106
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	118	137
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	96	109
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	110	120
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	102	111
Surrogate ¹³ C ₈ PFOS	%		Org-029	101	1	106	102	4	100	104
Surrogate ¹³ C ₂ PFOA	%		Org-029	100	1	102	107	5	106	100

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-2
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	103	1	94	98	4	108	104
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	91	1	87	86	1	94	95
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	90	1	83	88	6	91	100
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	108	1	85	87	2	105	94
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	120	1	111	111	0	117	105
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	116	1	110	113	3	119	115
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	100	1	91	95	4	97	100
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	104	1	98	100	2	101	108
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	104	1	99	103	4	103	108
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	99	1	92	97	5	95	101
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	119	1	115	118	3	110	119
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	107	1	93	97	4	103	102
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	107	1	87	86	1	106	88
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	109	1	120	127	6	103	117
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	105	1	120	116	3	109	125
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	125	1	121	113	7	126	120
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	101	1	93	95	2	95	101
Extracted ISTD d ₃ N MeFOSA	%		Org-029	108	1	98	98	0	102	100
Extracted ISTD d ₅ N EtFOSA	%		Org-029	106	1	91	91	0	102	94
Extracted ISTD d ₇ N MeFOSE	%		Org-029	109	1	91	97	6	102	86

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359252-2
Extracted ISTD d ₉ N EtFOSE	%		Org-029	113	1	96	100	4	109	107
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	122	1	114	113	1	114	110
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	116	1	105	110	5	117	109

Envirolab Reference: 359252

QUALITY CONTROL: Dissolved Gases in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			20/08/2024	1	20/08/2024	20/08/2024		20/08/2024	[NT]
Date analysed	-			20/08/2024	1	20/08/2024	20/08/2024		20/08/2024	[NT]
Methane	μg/L	5	AT-006	<5	1	<5	<5	0	96	[NT]

Envirolab Reference: 359252

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 359252

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 359252

Revision No: R00

Page | 33 of 34

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

Total Metals: The preserved sample provided was not identified as either total or dissolved, therefore the analysis was conducted from the unpreserved sample.

Note: there is a possibility some elements may be underestimated

All metals in water-dissolved

- # Percent recovery is not applicable due to the high concentration of the element in the sample. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 359252 Page | 34 of 34

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

INTERIM REPORT 361506

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	CTP Groundwater Monitoring
Number of Samples	8 Water
Date samples received	11/09/2024
Date completed instructions received	11/09/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	18/09/2024			
Interim Report Date	18/09/2024			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

VOCs in water						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date Extracted	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date Analysed	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	6	1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	104	104	106	104	104
Surrogate Toluene-d8	%	99	100	99	97	100
Surrogate 4-Bromofluorobenzene	%	91	91	91	83	91

VOCs in water				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date Extracted	-	12/09/2024	12/09/2024	12/09/2024
Date Analysed	-	13/09/2024	13/09/2024	13/09/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1
Chloroform	μg/L	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1
Cyclohexane	μg/L	9	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1
Benzene	μg/L	82	<1	<1
Dibromomethane	μg/L	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1
Chlorobenzene	μg/L	31	<1	<1
Ethylbenzene	μg/L	<1	<1	<1

VOCs in water				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Bromoform	μg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
Styrene	μg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1
o-xylene	μg/L	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1
Isopropylbenzene	μg/L	3	<1	<1
Bromobenzene	μg/L	<1	<1	<1
n-propyl benzene	μg/L	3	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	107	106	106
Surrogate Toluene-d8	%	102	96	98
Surrogate 4-Bromofluorobenzene	%	93	76	66

vTRH(C6-C10)/BTEXN in Water						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	104	104	106	104	104
Surrogate Toluene-d8	%	99	100	99	97	100
Surrogate 4-Bromofluorobenzene	%	91	91	91	83	91

vTRH(C6-C10)/BTEXN in Water				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date extracted	-	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024
TRH C ₆ - C ₉	μg/L	210	<10	<10
TRH C ₆ - C ₁₀	μg/L	240	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	160	<10	<10
Benzene	μg/L	82	<1	<1
Toluene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	μg/L	13	<1	<1
Surrogate Dibromofluoromethane	%	107	106	106
Surrogate Toluene-d8	%	102	96	98
Surrogate 4-Bromofluorobenzene	%	93	76	66

svTRH (C10-C40) in Water						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
TRH C ₁₀ - C ₁₄	μg/L	95	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	590	150	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	320	110	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	1,000	250	<50	<50	<50
TRH >C10 - C16	μg/L	140	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	140	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	780	210	<100	<100	110
TRH >C ₃₄ - C ₄₀	μg/L	110	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	1,000	210	<50	<50	110
Surrogate o-Terphenyl	%	86	92	83	85	77

svTRH (C10-C40) in Water				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date extracted	-	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024
TRH C ₁₀ - C ₁₄	μg/L	580	<100	<50
TRH C ₁₅ - C ₂₈	μg/L	1,200	<200	130
TRH C ₂₉ - C ₃₆	μg/L	190	<200	110
Total +ve TRH (C10-C36)	μg/L	1,900	<100	240
TRH >C ₁₀ - C ₁₆	μg/L	740	<100	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	720	<100	<50
TRH >C ₁₆ - C ₃₄	μg/L	1,100	<200	200
TRH >C ₃₄ - C ₄₀	μg/L	<100	<200	<100
Total +ve TRH (>C10-C40)	μg/L	1,900	<100	200
Surrogate o-Terphenyl	%	105	#	74

PAHs in Water						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	16/09/2024	16/09/2024	16/09/2024	16/09/2024	16/09/2024
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	91	100	97	99	76

Envirolab Reference: 361506

PAHs in Water				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date extracted	-	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	16/09/2024	16/09/2024	16/09/2024
Naphthalene	μg/L	12	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1
Acenaphthene	μg/L	0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1
Phenanthrene	μg/L	0.2	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1
Pyrene	μg/L	0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	12	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	97	#	81

Envirolab Reference: 361506

All metals in water-dissolved						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
Arsenic-Dissolved	μg/L	<1	1	<1	1	3
Boron-Dissolved	μg/L	200	850	90	90	30
Barium-Dissolved	μg/L	54	78	52	140	81
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	5	1	4	<1	2
Cobalt-Dissolved	μg/L	<1	<1	19	7	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	140	44	360	1,100	58
Molybdenum-Dissolved	μg/L	8	15	2	9	1
Nickel-Dissolved	μg/L	2	<1	36	25	1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Antimony-Dissolved	μg/L	1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	38	2	18	7	3
Iron-Dissolved	μg/L	20	30	<10	210	550

All metals in water-dissolved				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-	13/09/2024	13/09/2024	13/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024
Arsenic-Dissolved	μg/L	3	1	3
Boron-Dissolved	μg/L	1,600	220	30
Barium-Dissolved	μg/L	1,300	9	30
Beryllium-Dissolved	μg/L	<0.5	2	<0.5
Cadmium-Dissolved	μg/L	<0.1	0.1	<0.1
Chromium-Dissolved	μg/L	17	<1	<1
Copper-Dissolved	μg/L	2	5	3
Cobalt-Dissolved	μg/L	10	26	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	87	1,000	64
Molybdenum-Dissolved	μg/L	4	<1	1
Nickel-Dissolved	μg/L	39	19	1
Lead-Dissolved	μg/L	<1	<1	<1
Antimony-Dissolved	μg/L	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	μg/L	9	70	6
Iron-Dissolved	μg/L	560	30	470

All metals in water - total Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
Arsenic-Total	μg/L	6	5	<1	1	2
Boron-Total	μg/L	200	800	80	100	30
Barium-Total	μg/L	180	180	93	150	3,600
Beryllium-Total	μg/L	0.7	0.5	<0.5	<0.5	<0.5
Cadmium-Total	μg/L	<0.1	0.2	<0.1	<0.1	<0.1
Chromium-Total	μg/L	15	23	9	3	1
Copper-Total	μg/L	51	38	16	4	7
Cobalt-Total	μg/L	7	5	18	8	<1
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Total	μg/L	310	200	300	1,000	82
Molybdenum-Total	μg/L	8	9	2	8	<1
Nickel-Total	μg/L	11	10	37	24	2
Lead-Total	μg/L	17	37	5	<1	2
Antimony-Total	μg/L	3	1	<1	<1	<1
Selenium-Total	μg/L	<1	<1	<1	<1	<1
Tin-Total	μg/L	1	<1	<1	1	<1
Zinc-Total	μg/L	340	170	33	16	21
Iron-Total	μg/L	14,000	22,000	2,200	1,900	2,300

Envirolab Reference: 361506

All metals in water - total				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024
Arsenic-Total	μg/L	5	4	4
Boron-Total	μg/L	1,700	200	<20
Barium-Total	μg/L	1,500	83	61
Beryllium-Total	μg/L	<0.5	5	<0.5
Cadmium-Total	μg/L	0.2	0.1	<0.1
Chromium-Total	μg/L	27	11	2
Copper-Total	μg/L	17	50	30
Cobalt-Total	μg/L	17	43	1
Mercury-Total	μg/L	<0.05	0.07	<0.05
Manganese-Total	μg/L	140	1,400	100
Molybdenum-Total	μg/L	3	<1	2
Nickel-Total	μg/L	40	35	4
Lead-Total	μg/L	26	32	3
Antimony-Total	μg/L	<1	<1	3
Selenium-Total	μg/L	<1	1	<1
Tin-Total	μg/L	1	<1	<1
Zinc-Total	μg/L	110	170	44
Iron-Total	μg/L	8,600	15,000	2,000

Envirolab Reference: 361506

Metals in Waters - Total						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024	13/09/2024	13/09/2024
Phosphorus - Total	mg/L	13	3.1	1.1	1.7	8.8

Metals in Waters - Total				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	13/09/2024	13/09/2024	13/09/2024
Phosphorus - Total	mg/L	3.7	24	12

Miscellaneous Inorganics						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	11/09/2024	11/09/2024	11/09/2024	11/09/2024	11/09/2024
Date analysed	-	11/09/2024	11/09/2024	11/09/2024	11/09/2024	11/09/2024
Ammonia as N in water	mg/L	1.5	1.3	1.0	0.35	0.47
Nitrate as N in water	mg/L	0.077	0.02	0.46	0.47	<0.005
Total Nitrogen in water	mg/L	5.2	4.9	1.8	1.3	3.2
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Trivalent Chromium, Cr ³⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-	11/09/2024	11/09/2024	11/09/2024
Date analysed	-	11/09/2024	11/09/2024	11/09/2024
Ammonia as N in water	mg/L	270	0.042	0.42
Nitrate as N in water	mg/L	0.28	0.24	0.02
Total Nitrogen in water	mg/L	320	1.2	2.0
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	<0.005	<0.005	<0.005
Trivalent Chromium, Cr ³⁺	mg/L	0.02	<0.005	<0.005

Ion Balance						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	11/09/2024	11/09/2024	11/09/2024	11/09/2024	11/09/2024
Date analysed	-	11/09/2024	11/09/2024	11/09/2024	11/09/2024	11/09/2024
Calcium - Dissolved	mg/L	110	43	210	180	13
Potassium - Dissolved	mg/L	12	27	48	50	5.1
Sodium - Dissolved	mg/L	88	130	3,000	2,500	63
Magnesium - Dissolved	mg/L	18	28	460	280	5
Hardness (calc) equivalent CaCO ₃	mg/L	350	220	2,400	1,600	52
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	280	460	670	470	67
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	280	460	670	470	67
Sulphate, SO4	mg/L	69	20	560	490	14
Chloride, Cl	mg/L	200	78	5,800	4,100	95
Ionic Balance	%	-6.0	-5.0	-2.0	3.0	-5.0

Ion Balance				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	ВН36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-	17/09/2024	11/09/2024	11/09/2024
Date analysed	-	17/09/2024	11/09/2024	11/09/2024
Calcium - Dissolved	mg/L	38	1	13
Potassium - Dissolved	mg/L	340	6.5	5.2
Sodium - Dissolved	mg/L	1,900	360	60
Magnesium - Dissolved	mg/L	86	7.1	4
Hardness (calc) equivalent CaCO₃	mg/L	450	33	50
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	1,600	37	70
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	1,600	37	70
Sulphate, SO4	mg/L	2	270	14
Chloride, Cl	mg/L	3,000	310	84
Ionic Balance	%	-7.0	4.0	-4.0

PFAS in Waters Extended						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	12/09/2024	12/09/2024	12/09/2024	12/09/2024	12/09/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	0.05	<0.01	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	0.07	<0.01	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	0.53	<0.01	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	0.03	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	0.74	<0.01	<0.01	<0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	0.03	<0.02	<0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	0.10	<0.01	0.02	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	0.01	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	0.03	<0.01	<0.01	<0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.05	<0.05	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.05	<0.05	0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.1	<0.1	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.1	<0.1	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	101	101	98	107	102
Surrogate ¹³ C ₂ PFOA	%	97	100	94	96	96
Extracted ISTD ¹³ C ₃ PFBS	%	101	106	97	98	101
Extracted ISTD ¹⁸ O ₂ PFHxS	%	105	103	86	88	92
Extracted ISTD ¹³ C ₄ PFOS	%	96	91	77	81	75
Extracted ISTD 13 C4 PFBA	%	85	95	73	71	92

PFAS in Waters Extended						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	102	104	82	88	98
Extracted ISTD 13 C2 PFHxA	%	112	110	83	93	105
Extracted ISTD 13 C ₄ PFHpA	%	114	111	84	89	96
Extracted ISTD 13 C ₄ PFOA	%	106	102	83	87	93
Extracted ISTD 13 C ₅ PFNA	%	102	99	72	81	77
Extracted ISTD 13 C2 PFDA	%	95	83	65	68	64
Extracted ISTD 13 C2 PFUnDA	%	92	78	62	63	53
Extracted ISTD 13 C2 PFDoDA	%	90	78	68	66	50
Extracted ISTD 13 C2 PFTeDA	%	83	75	66	58	50
Extracted ISTD 13 C ₂ 4:2FTS	%	98	92	23	32	74
Extracted ISTD 13 C ₂ 6:2FTS	%	81	85	27	32	71
Extracted ISTD 13 C2 8:2FTS	%	82	76	31	33	58
Extracted ISTD 13 C8 FOSA	%	103	95	76	76	65
Extracted ISTD d ₃ N MeFOSA	%	89	85	78	75	63
Extracted ISTD d ₅ N EtFOSA	%	93	84	82	77	61
Extracted ISTD d ₇ N MeFOSE	%	96	87	82	79	57
Extracted ISTD d ₉ N EtFOSE	%	106	92	90	86	67
Extracted ISTD d ₃ N MeFOSAA	%	96	91	52	54	62
Extracted ISTD d₅ N EtFOSAA	%	89	75	47	47	47
Total Positive PFHxS & PFOS	μg/L	<0.01	1.3	<0.01	<0.01	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01	0.77	<0.01	<0.01	<0.01
Total Positive PFAS	μg/L	<0.01	1.6	<0.01	0.02	0.01

Envirolab Reference: 361506

PFAS in Waters Extended				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-	12/09/2024	12/09/2024	12/09/2024
Date analysed	-	12/09/2024	12/09/2024	12/09/2024
Perfluorobutanesulfonic acid	μg/L	0.59	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	0.07	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.10	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	0.09	<0.01	0.02
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	0.68	<0.02	<0.02
Perfluoropentanoic acid	μg/L	0.03	<0.02	<0.02
Perfluorohexanoic acid	μg/L	0.28	<0.01	<0.01
Perfluoroheptanoic acid	μg/L	0.07	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	0.22	<0.01	<0.01
Perfluorononanoic acid	μg/L	0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	0.03
8:2 FTS	μg/L	<0.02	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.05	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	96	98	107
Surrogate ¹³ C ₂ PFOA	%	93	94	94
Extracted ISTD 13 C3 PFBS	%	109	101	105
Extracted ISTD 18 O2 PFHxS	%	104	96	97
Extracted ISTD ¹³ C ₄ PFOS	%	105	86	84
Extracted ISTD 13 C ₄ PFBA	%	48	76	96

PFAS in Waters Extended				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	81	106	108
Extracted ISTD 13 C ₂ PFHxA	%	103	108	107
Extracted ISTD 13 C ₄ PFHpA	%	116	108	106
Extracted ISTD 13 C ₄ PFOA	%	110	99	100
Extracted ISTD 13 C ₅ PFNA	%	110	95	93
Extracted ISTD 13 C ₂ PFDA	%	92	76	78
Extracted ISTD 13 C2 PFUnDA	%	98	72	65
Extracted ISTD 13 C ₂ PFDoDA	%	85	78	72
Extracted ISTD 13 C2 PFTeDA	%	63	65	66
Extracted ISTD 13 C ₂ 4:2FTS	%	106	71	87
Extracted ISTD 13 C ₂ 6:2FTS	%	92	72	81
Extracted ISTD 13 C2 8:2FTS	%	92	66	72
Extracted ISTD 13 C8 FOSA	%	105	86	81
Extracted ISTD d ₃ N MeFOSA	%	84	80	78
Extracted ISTD d ₅ N EtFOSA	%	81	76	79
Extracted ISTD d ₇ N MeFOSE	%	91	81	79
Extracted ISTD d ₉ N EtFOSE	%	100	85	87
Extracted ISTD d ₃ N MeFOSAA	%	80	76	79
Extracted ISTD d₅ N EtFOSAA	%	80	66	64
Total Positive PFHxS & PFOS	μg/L	0.20	<0.01	0.02
Total Positive PFOA & PFOS	μg/L	0.31	<0.01	0.02
Total Positive PFAS	μg/L	2.2	<0.01	0.04

Dissolved Gases in Water						
Our Reference		361506-1	361506-2	361506-3	361506-4	361506-5
Your Reference	UNITS	S02d	S06	BH120	BH715b	BH019
Date Sampled		10/09/2024	10/09/2024	10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-					
Date analysed	-					
Methane	μg/L					

Dissolved Gases in Water				
Our Reference		361506-6	361506-7	361506-8
Your Reference	UNITS	B126	BH36	DS1
Date Sampled		10/09/2024	10/09/2024	11/09/2024
Type of sample		Water	Water	Water
Date prepared	-			
Date analysed	-			
Methane	μg/L			

Envirolab Reference: 361506

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID based on draft method USEPA SOP RSK175
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.

Envirolab Reference: 361506

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 361506

QUALIT	Y CONTROL	.: VOCs i	n water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date Extracted	-			16/09/2024	[NT]		[NT]	[NT]	12/09/2024	
Date Analysed	-			17/09/2024	[NT]		[NT]	[NT]	13/09/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	106	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	105	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	105	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	101	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	_: VOCs ir	n water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	105	[NT]		[NT]	[NT]	105		
Surrogate Toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	101		
Surrogate 4-Bromofluorobenzene	%		Org-023	84	[NT]		[NT]	[NT]	99		

Envirolab Reference: 361506

QUALITY CONTR	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			16/09/2024	[NT]		[NT]	[NT]	12/09/2024	
Date analysed	-			17/09/2024	[NT]		[NT]	[NT]	13/09/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	102	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	102	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	101	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	105	[NT]		[NT]	[NT]	105	
Surrogate Toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	101	
Surrogate 4-Bromofluorobenzene	%		Org-023	84	[NT]		[NT]	[NT]	99	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	361506-2	
Date extracted	-			16/09/2024	1	12/09/2024	12/09/2024		12/09/2024	12/09/2024	
Date analysed	-			16/09/2024	1	13/09/2024	13/09/2024		12/09/2024	13/09/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	95	91	4	99	106	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	590	570	3	107	106	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	320	320	0	100	106	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	140	140	0	99	106	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	780	740	5	107	106	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	110	170	43	100	106	
Surrogate o-Terphenyl	%		Org-020	81	1	86	84	2	116	81	

QUALIT	TY CONTROL	: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-2
Date extracted	-			12/09/2024	1	12/09/2024	12/09/2024		12/09/2024	12/09/2024
Date analysed	-			16/09/2024	1	16/09/2024	16/09/2024		16/09/2024	16/09/2024
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	75	107
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	104
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	109
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	111
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	112
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	111
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	69	104
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	70	102
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	100	1	91	88	3	95	119

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	361506-2
Date prepared	-			13/09/2024	2	13/09/2024	13/09/2024		13/09/2024	13/09/2024
Date analysed	-			13/09/2024	2	13/09/2024	13/09/2024		13/09/2024	13/09/2024
Arsenic-Dissolved	μg/L	1	Metals-022	<1	2	1	1	0	98	[NT]
Boron-Dissolved	μg/L	20	Metals-022	<20	2	850	860	1	90	[NT]
Barium-Dissolved	μg/L	1	Metals-022	<1	2	78	77	1	91	[NT]
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	2	<0.5	<0.5	0	91	[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	2	<0.1	<0.1	0	95	[NT]
Chromium-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	106	[NT]
Copper-Dissolved	μg/L	1	Metals-022	<1	2	1	<1	0	103	[NT]
Cobalt-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	98	[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	2	<0.05	[NT]		95	77
Manganese-Dissolved	μg/L	5	Metals-022	<5	2	44	42	5	104	[NT]
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	2	15	14	7	97	[NT]
Nickel-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	103	[NT]
Lead-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	105	[NT]
Antimony-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	97	[NT]
Selenium-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	99	[NT]
Tin-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	97	[NT]
Zinc-Dissolved	μg/L	1	Metals-022	<1	2	2	2	0	101	[NT]
Iron-Dissolved	μg/L	10	Metals-022	<10	2	30	30	0	104	[NT]

Envirolab Reference: 361506

QUALITY COI	NTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	361506-3
Date prepared	-			[NT]	4	13/09/2024	13/09/2024			13/09/2024
Date analysed	-			[NT]	4	13/09/2024	13/09/2024			13/09/2024
Arsenic-Dissolved	μg/L	1	Metals-022	[NT]	4	1	[NT]			97
Boron-Dissolved	μg/L	20	Metals-022	[NT]	4	90	[NT]			98
Barium-Dissolved	μg/L	1	Metals-022	[NT]	4	140	[NT]			90
Beryllium-Dissolved	μg/L	0.5	Metals-022	[NT]	4	<0.5	[NT]			81
Cadmium-Dissolved	μg/L	0.1	Metals-022	[NT]	4	<0.1	[NT]			98
Chromium-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	[NT]			125
Copper-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	[NT]			107
Cobalt-Dissolved	μg/L	1	Metals-022	[NT]	4	7	[NT]			109
Mercury-Dissolved	μg/L	0.05	Metals-021	[NT]	4	<0.05	<0.05	0		[NT]
Manganese-Dissolved	μg/L	5	Metals-022	[NT]	4	1100	[NT]			#
Molybdenum-Dissolved	μg/L	1	Metals-022	[NT]	4	9	[NT]			109
Nickel-Dissolved	μg/L	1	Metals-022	[NT]	4	25	[NT]			111
Lead-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	[NT]			88
Antimony-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	[NT]			94
Selenium-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	[NT]			97
Tin-Dissolved	μg/L	1	Metals-022	[NT]	4	<1	[NT]			95
Zinc-Dissolved	μg/L	1	Metals-022	[NT]	4	7	[NT]			118
Iron-Dissolved	μg/L	10	Metals-022	[NT]	4	210	[NT]			112

Envirolab Reference: 361506

QUALITY CO	NTROL: All	metals in	water - total			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-4	
Date prepared	-			16/09/2024	1	12/09/2024	12/09/2024		16/09/2024	16/09/2024	
Date analysed	-			16/09/2024	1	13/09/2024	13/09/2024		16/09/2024	16/09/2024	
Arsenic-Total	μg/L	1	Metals-022	<1	1	6	[NT]		93	[NT]	
Boron-Total	μg/L	20	Metals-022	<20	1	200	[NT]		83	[NT]	
Barium-Total	μg/L	1	Metals-022	<1	1	180	[NT]		92	[NT]	
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	0.7	[NT]		83	[NT]	
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		93	[NT]	
Chromium-Total	μg/L	1	Metals-022	<1	1	15	[NT]		83	[NT]	
Copper-Total	μg/L	1	Metals-022	<1	1	51	[NT]		91	[NT]	
Cobalt-Total	μg/L	1	Metals-022	<1	1	7	[NT]		86	[NT]	
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	96	74	
Manganese-Total	μg/L	5	Metals-022	<5	1	310	[NT]		86	[NT]	
Molybdenum-Total	μg/L	1	Metals-022	<1	1	8	[NT]		89	[NT]	
Nickel-Total	μg/L	1	Metals-022	<1	1	11	[NT]		86	[NT]	
Lead-Total	μg/L	1	Metals-022	<1	1	17	[NT]		94	[NT]	
Antimony-Total	μg/L	1	Metals-022	<1	1	3	[NT]		93	[NT]	
Selenium-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		93	[NT]	
Tin-Total	μg/L	1	Metals-022	<1	1	1	[NT]		95	[NT]	
Zinc-Total	μg/L	1	Metals-022	<1	1	340	[NT]		88	[NT]	
Iron-Total	μg/L	10	Metals-022	<10	1	14000	[NT]		85	[NT]	

Envirolab Reference: 361506

QUALITY CC	NTROL: All	metals in	water - total			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	361506-5	
Date prepared	-			[NT]	4	12/09/2024	12/09/2024			16/09/2024	
Date analysed	-			[NT]	4	13/09/2024	13/09/2024			16/09/2024	
Arsenic-Total	μg/L	1	Metals-022	[NT]	4	1	1	0		93	
Boron-Total	μg/L	20	Metals-022	[NT]	4	100	100	0		72	
Barium-Total	μg/L	1	Metals-022	[NT]	4	150	150	0		#	
Beryllium-Total	μg/L	0.5	Metals-022	[NT]	4	<0.5	<0.5	0		92	
Cadmium-Total	μg/L	0.1	Metals-022	[NT]	4	<0.1	<0.1	0		96	
Chromium-Total	μg/L	1	Metals-022	[NT]	4	3	2	40		92	
Copper-Total	μg/L	1	Metals-022	[NT]	4	4	3	29		91	
Cobalt-Total	μg/L	1	Metals-022	[NT]	4	8	8	0		92	
Mercury-Total	μg/L	0.05	Metals-021	[NT]	4	<0.05	[NT]			[NT]	
Manganese-Total	μg/L	5	Metals-022	[NT]	4	1000	1000	0		86	
Molybdenum-Total	μg/L	1	Metals-022	[NT]	4	8	8	0		95	
Nickel-Total	μg/L	1	Metals-022	[NT]	4	24	23	4		94	
Lead-Total	μg/L	1	Metals-022	[NT]	4	<1	<1	0		88	
Antimony-Total	μg/L	1	Metals-022	[NT]	4	<1	<1	0		89	
Selenium-Total	μg/L	1	Metals-022	[NT]	4	<1	<1	0		92	
Tin-Total	μg/L	1	Metals-022	[NT]	4	1	1	0		88	
Zinc-Total	μg/L	1	Metals-022	[NT]	4	16	17	6		96	
Iron-Total	μg/L	10	Metals-022	[NT]	4	1900	1900	0		#	

Envirolab Reference: 361506

QUALITY CC	NTROL: Me	tals in Wa	aters - Total			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			12/09/2024	4	12/09/2024	12/09/2024		12/09/2024	[NT]
Date analysed	-			13/09/2024	4	13/09/2024	13/09/2024		13/09/2024	[NT]
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	4	1.7	1.6	6	111	[NT]

Envirolab Reference: 361506

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-2
Date prepared	-			11/09/2024	1	11/09/2024	11/09/2024		11/09/2024	11/09/2024
Date analysed	-			11/09/2024	1	11/09/2024	11/09/2024		11/09/2024	11/09/2024
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	1.5	1.6	6	100	72
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.077	0.076	1	105	111
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	5.2	4.5	14	113	[NT]
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	0.005	Inorg-118	<0.005	1	<0.005	<0.005	0	99	96
Trivalent Chromium, Cr ³⁺	mg/L	0.005	Inorg-118	<0.005	1	<0.005	[NT]		[NT]	[NT]

Envirolab Reference: 361506

QUALI	TY CONTRO	L: Ion Ba	lance		Duplicate Spike Recovery C					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-2
Date prepared	-			11/09/2024	1	11/09/2024	11/09/2024		11/09/2024	11/09/2024
Date analysed	-			11/09/2024	1	11/09/2024	11/09/2024		11/09/2024	11/09/2024
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	110	110	0	111	124
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	12	12	0	93	96
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	88	90	2	102	#
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	18	18	0	111	118
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	1	350	360	3	[NT]	[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	280	250	11	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	280	250	11	112	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	69	70	1	116	106
Chloride, Cl	mg/L	1	Inorg-081	<1	1	200	210	5	106	#
Ionic Balance	%		Inorg-040	[NT]	1	-6.0	-5.0	-18	[NT]	[NT]

Envirolab Reference: 361506

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-2
Date prepared	-			12/09/2024	1	12/09/2024	12/09/2024		12/09/2024	12/09/2024
Date analysed	-			12/09/2024	1	12/09/2024	12/09/2024		12/09/2024	12/09/2024
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	100	99
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	95	97
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	105	106
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	107	103
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	112	105
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	82	84
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	102	100
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	101	103
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	103	105
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	101	103
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	104	104
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	99	99
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	106	107
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	107	102
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	106	102
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	108	104
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	105	99
4:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	100	104
6:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	109	112
8:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	108	103
10:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	98	129
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	103	100
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	107	103
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	103	101
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	112	104
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	111	98
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	104	109
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	103	105
Surrogate ¹³ C ₈ PFOS	%		Org-029	102	1	101	100	1	112	98
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	1	97	97	0	96	99

QUALITY CO	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-2
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	99	1	101	108	7	96	105
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	97	1	105	104	1	89	105
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	83	1	96	96	0	73	90
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	103	1	85	87	2	98	95
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	101	1	102	103	1	99	103
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	96	1	112	114	2	94	112
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	100	1	114	115	1	94	112
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	96	1	106	106	0	89	102
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	88	1	102	100	2	79	94
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	76	1	95	90	5	69	84
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	67	1	92	81	13	58	76
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	67	1	90	81	11	59	78
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	71	1	83	75	10	59	73
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	79	1	98	98	0	87	101
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	84	1	81	84	4	86	93
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	75	1	82	84	2	72	82
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	86	1	103	94	9	80	94
Extracted ISTD d ₃ N MeFOSA	%		Org-029	78	1	89	85	5	76	84
Extracted ISTD d ₅ N EtFOSA	%		Org-029	78	1	93	88	6	77	86
Extracted ISTD d ₇ N MeFOSE	%		Org-029	75	1	96	88	9	68	88

Envirolab Reference: 361506

QUALITY CON	Du	plicate	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361506-2
Extracted ISTD d ₉ N EtFOSE	%		Org-029	80	1	106	100	6	70	91
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	84	1	96	92	4	72	85
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	71	1	89	79	12	60	75

Envirolab Reference: 361506

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 361506

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 361506 Page | 40 of 41

Report Comments

ION_BALANCE: # Percent recovery is not applicable due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Total Metals: The preserved sample provided for #2, 3 & 6 was not identified as either total or dissolved, therefore the analysis was conducted from the unpreserved sample.

Note: there is a possibility some elements may be underestimated

Dissolved Metals: For the determination of dissolved metals, the unpreserved sample was filtered through 0.45um filter at the lab due to the appearance

of colloids and/or sediment in the supplied HNO3 bottle (it appears the sample has not been field filtered).

Note: there is a possibility some elements may be underestimated.

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate/matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 361506-7.

The PQL has been raised due to interferences from analytes (other than those being tested) in sample 361506-7.

All metals in water-dissolved - # Percent recovery is not applicable due to the high concentration of the element in the sample. However an acceptable recovery was obtained for the LCS.

PAHs in Water - # Percent recovery for the surrogate is not possible to report due to interference from analytes (other than those being tested) in sample 361506-7.

TRACE METALS: In theory the total metal content should be higher than the dissolved metal content. However, in some samples this is not the case. The sample has been re-analysed for both Total and Dissolved metals and results have been confirmed.

Envirolab Reference: 361506 Page | 41 of 41

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

CERTIFICATE OF ANALYSIS 366179

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	CTP Groundwater Monitoring
Number of Samples	7 Water
Date samples received	12/11/2024
Date completed instructions received	12/11/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	20/11/2024
Date of Issue	20/11/2024
NATA Accreditation Number 2901. Th	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

VOCs in water						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date Extracted	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Date Analysed	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	6	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	4	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	99	97	94	98
Surrogate Toluene-d8	%	98	98	97	99	99
Surrogate 4-Bromofluorobenzene	%	103	102	98	93	101

VOCs in water			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date Extracted	-	19/11/2024	19/11/2024
Date Analysed	-	19/11/2024	19/11/2024
Dichlorodifluoromethane	μg/L	<10	<10
Chloromethane	μg/L	<10	<10
Vinyl Chloride	μg/L	<10	<10
Bromomethane	μg/L	<10	<10
Chloroethane	μg/L	<10	<10
Trichlorofluoromethane	μg/L	<10	<10
1,1-Dichloroethene	μg/L	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	μg/L	1	<1
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	μg/L	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1
1,1-dichloropropene	μg/L	<1	<1
Cyclohexane	μg/L	<1	<1
Carbon tetrachloride	μg/L	<1	<1
Benzene	μg/L	<1	<1
Dibromomethane	μg/L	<1	<1
1,2-dichloropropane	μg/L	<1	<1
Trichloroethene	μg/L	<1	<1
Bromodichloromethane	μg/L	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1
Toluene	μg/L	<1	<1
1,3-dichloropropane	μg/L	<1	<1
Dibromochloromethane	μg/L	<1	<1
1,2-dibromoethane	μg/L	<1	<1
Tetrachloroethene	μg/L	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1
Chlorobenzene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1

VOCs in water			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	μg/L	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1
Isopropylbenzene	μg/L	<1	<1
Bromobenzene	μg/L	<1	<1
n-propyl benzene	μg/L	<1	<1
2-chlorotoluene	μg/L	<1	<1
4-chlorotoluene	μg/L	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1
Tert-butyl benzene	μg/L	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1
Sec-butyl benzene	μg/L	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1
n-butyl benzene	μg/L	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1
Hexachlorobutadiene	μg/L	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	98	99
Surrogate Toluene-d8	%	99	98
Surrogate 4-Bromofluorobenzene	%	104	103

vTRH(C6-C10)/BTEXN in Water						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Date analysed	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
TRH C ₆ - C ₉	μg/L	<10	<10	12	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	13	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	6	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	99	97	94	98
Surrogate Toluene-d8	%	98	98	97	99	99
Surrogate 4-Bromofluorobenzene	%	103	102	98	93	101

vTRH(C6-C10)/BTEXN in Water			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date extracted	-	19/11/2024	19/11/2024
Date analysed	-	19/11/2024	19/11/2024
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	98	99
Surrogate Toluene-d8	%	99	98
Surrogate 4-Bromofluorobenzene	%	104	103

svTRH (C10-C40) in Water						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	14/11/2024	14/11/2024	14/11/2024	14/11/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	67	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	180	290	220
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	250	130
Total +ve TRH (C10-C36)	μg/L	<50	<50	250	540	350
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	89	51	53
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	89	51	53
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	170	450	310
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	170	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	260	670	360
Surrogate o-Terphenyl	%	92	89	94	85	90

svTRH (C10-C40) in Water			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date extracted	-	13/11/2024	13/11/2024
Date analysed	-	14/11/2024	14/11/2024
TRH C ₁₀ - C ₁₄	μg/L	91	<50
TRH C ₁₅ - C ₂₈	μg/L	550	<100
TRH C ₂₉ - C ₃₆	μg/L	240	<100
Total +ve TRH (C10-C36)	μg/L	880	<50
TRH >C ₁₀ - C ₁₆	μg/L	150	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	150	<50
TRH >C ₁₆ - C ₃₄	μg/L	660	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Total +ve TRH (>C10-C40)	μg/L	810	<50
Surrogate o-Terphenyl	%	102	91

PAHs in Water						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	14/11/2024	14/11/2024	14/11/2024	14/11/2024	14/11/2024
Naphthalene	μg/L	<0.1	<0.1	0.3	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	0.27	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	93	101	78	78	83

PAHs in Water			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date extracted	-	13/11/2024	13/11/2024
Date analysed	-	14/11/2024	14/11/2024
Naphthalene	μg/L	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	94	86

All metals in water-dissolved						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Iron-Dissolved	μg/L	<10	<10	1,200	<10	10
Arsenic-Dissolved	μg/L	<1	<1	1	<1	1
Boron-Dissolved	μg/L	80	50	540	500	80
Barium-Dissolved	μg/L	65	33	330	130	72
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	6	<1	<1
Copper-Dissolved	μg/L	3	110	5	<1	<1
Cobalt-Dissolved	μg/L	19	8	3	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	240	320	33	100	200
Molybdenum-Dissolved	μg/L	3	4	3	26	23
Nickel-Dissolved	μg/L	26	34	18	2	4
Lead-Dissolved	μg/L	<1	<1	1	<1	<1
Antimony-Dissolved	μg/L	1	<1	<1	3	2
Selenium-Dissolved	μg/L	<1	1	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	10	13	24	4	2

All metals in water-dissolved			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024
Iron-Dissolved	μg/L	<10	<10
Arsenic-Dissolved	μg/L	1	<1
Boron-Dissolved	μg/L	200	50
Barium-Dissolved	μg/L	39	39
Beryllium-Dissolved	μg/L	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	2.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	2	10
Cobalt-Dissolved	μg/L	<1	59
Mercury-Dissolved	μg/L	<0.05	<0.05
Manganese-Dissolved	μg/L	110	1,300
Molybdenum-Dissolved	μg/L	34	1
Nickel-Dissolved	μg/L	<1	72
Lead-Dissolved	μg/L	<1	<1
Antimony-Dissolved	μg/L	2	1
Selenium-Dissolved	μg/L	<1	<1
Tin-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	2	590

All metals in water - total						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Iron-Total	μg/L	1,700	5,900	2,300	66,000	13,000
Arsenic-Total	μg/L	<1	8	2	13	7
Boron-Total	μg/L	80	50	420	580	80
Barium-Total	μg/L	100	100	260	1,000	180
Beryllium-Total	μg/L	<0.5	0.9	<0.5	3	1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	0.4	0.2
Chromium-Total	μg/L	5	8	9	52	23
Copper-Total	μg/L	29	310	21	180	67
Cobalt-Total	μg/L	21	21	5	25	9
Mercury-Total	μg/L	<0.05	<0.2	<0.05	<0.05	0.06
Manganese-Total	μg/L	310	500	51	1,500	460
Molybdenum-Total	μg/L	5	4	3	23	20
Nickel-Total	μg/L	44	40	19	38	22
Lead-Total	μg/L	3	9	5	63	40
Antimony-Total	μg/L	2	<1	2	6	4
Selenium-Total	μg/L	<1	1	<1	<1	<1
Tin-Total	μg/L	2	<1	2	3	2
Zinc-Total	μg/L	46	53	81	910	570

All metals in water - total			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024
Iron-Total	μg/L	20,000	21,000
Arsenic-Total	μg/L	10	8
Boron-Total	μg/L	200	50
Barium-Total	μg/L	190	210
Beryllium-Total	μg/L	1	2
Cadmium-Total	μg/L	0.1	3.4
Chromium-Total	μg/L	25	28
Copper-Total	μg/L	59	190
Cobalt-Total	μg/L	8	160
Mercury-Total	μg/L	<0.05	<0.05
Manganese-Total	μg/L	500	1,600
Molybdenum-Total	μg/L	31	2
Nickel-Total	μg/L	13	140
Lead-Total	μg/L	22	34
Antimony-Total	μg/L	6	1
Selenium-Total	μg/L	<1	1
Tin-Total	μg/L	2	16
Zinc-Total	μg/L	540	1,500

Metals in Waters - Total						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Phosphorus - Total	mg/L	0.07	0.1	0.2	0.90	0.5

Metals in Waters - Total			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024
Phosphorus - Total	mg/L	2.0	1.0

Miscellaneous Inorganics						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Ammonia as N in water	mg/L	1.0	0.013	76	1.1	2.5
Nitrate as N in water	mg/L	0.70	0.20	2.8	0.98	0.008
Total Nitrogen in water	mg/L	1.8	0.3	100	2.3	2.5
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Trivalent Chromium, Cr ³⁺	mg/L	<0.005	<0.005	0.006	<0.005	<0.005

Miscellaneous Inorganics			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024
Ammonia as N in water	mg/L	11	1.3
Nitrate as N in water	mg/L	0.098	<0.005
Total Nitrogen in water	mg/L	24	1.4
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	<0.005	<0.005
Trivalent Chromium, Cr³+	mg/L	<0.005	<0.005

Ion Balance						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Calcium - Dissolved	mg/L	200	97	24	48	88
Potassium - Dissolved	mg/L	49	22	120	44	56
Sodium - Dissolved	mg/L	3,000	1,100	600	120	180
Magnesium - Dissolved	mg/L	420	120	24	17	7.2
Hardness (calc) equivalent CaCO ₃	mg/L	2,200	750	160	190	250
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	660	810	510	330	230
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	660	810	510	330	230
Sulphate, SO4	mg/L	630	370	4	33	60
Chloride, Cl	mg/L	6,600	1,700	1,100	150	310
Ionic Balance	%	-9.0	-5.0	-10	-6.0	-2.0

Ion Balance			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024
Calcium - Dissolved	mg/L	77	160
Potassium - Dissolved	mg/L	13	37
Sodium - Dissolved	mg/L	110	4,500
Magnesium - Dissolved	mg/L	13	530
Hardness (calc) equivalent CaCO₃	mg/L	240	2,600
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	210	590
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5
Total Alkalinity as CaCO₃	mg/L	210	590
Sulphate, SO4	mg/L	75	760
Chloride, Cl	mg/L	220	9,800
Ionic Balance	%	-8.0	-10

PFAS in Waters Extended						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024	13/11/2024	13/11/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01	0.05	0.04	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01	0.03	0.05	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01	0.04	0.34	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01	<0.01	0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01	0.05	0.45	0.03
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.02	0.22	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	<0.01	0.11	0.06	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	<0.01	0.03	0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	0.08	0.02	0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01	0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	0.01	0.03	0.02
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	101	101	100	98	99
Surrogate ¹³ C ₂ PFOA	%	104	103	101	102	102
Extracted ISTD 13 C ₃ PFBS	%	100	103	103	108	106
Extracted ISTD 18 O ₂ PFHxS	%	102	101	104	107	104
Extracted ISTD 13 C4 PFOS	%	98	97	102	104	101
Extracted ISTD 13 C4 PFBA	%	46	76	54	90	85

PFAS in Waters Extended		200470.4	200470.0	200470.0	200470.4	200472.5
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	75	92	89	96	97
Extracted ISTD 13 C ₂ PFHxA	%	89	98	95	102	99
Extracted ISTD 13 C4 PFHpA	%	87	97	102	105	104
Extracted ISTD 13 C ₄ PFOA	%	83	93	102	103	103
Extracted ISTD 13 C ₅ PFNA	%	92	94	105	105	102
Extracted ISTD 13 C ₂ PFDA	%	93	97	108	103	103
Extracted ISTD 13 C2 PFUnDA	%	98	98	117	106	108
Extracted ISTD 13 C2 PFDoDA	%	99	101	113	99	114
Extracted ISTD 13 C2 PFTeDA	%	104	96	107	100	107
Extracted ISTD 13 C ₂ 4:2FTS	%	37	61	90	105	98
Extracted ISTD 13 C ₂ 6:2FTS	%	37	53	93	103	100
Extracted ISTD 13 C2 8:2FTS	%	48	65	92	105	113
Extracted ISTD 13 C8 FOSA	%	85	95	104	106	103
Extracted ISTD d ₃ N MeFOSA	%	99	97	104	96	100
Extracted ISTD d ₅ N EtFOSA	%	103	98	101	99	100
Extracted ISTD d ₇ N MeFOSE	%	104	103	113	101	100
Extracted ISTD d ₉ N EtFOSE	%	95	100	101	96	99
Extracted ISTD d ₃ N MeFOSAA	%	71	74	96	101	106
Extracted ISTD d₅ N EtFOSAA	%	75	79	99	108	112
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01	0.09	0.79	0.03
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01	0.13	0.47	0.04
Total Positive PFAS	μg/L	<0.01	<0.01	0.63	1.0	0.06

PFAS in Waters Extended			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.1
Perfluoropentanoic acid	μg/L	<0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.05
6:2 FTS	μg/L	0.04	<0.05
8:2 FTS	μg/L	<0.02	<0.04
10:2 FTS	μg/L	<0.02	<0.04
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	96	100
Surrogate ¹³ C ₂ PFOA	%	107	104
Extracted ISTD 13 C3 PFBS	%	104	101
Extracted ISTD 18 O2 PFHxS	%	98	96
Extracted ISTD 13 C4 PFOS	%	103	95
Extracted ISTD 13 C ₄ PFBA	%	78	38

PFAS in Waters Extended			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Extracted ISTD 13 C3 PFPeA	%	92	69
Extracted ISTD 13 C ₂ PFHxA	%	102	82
Extracted ISTD 13 C4 PFHpA	%	98	80
Extracted ISTD 13 C ₄ PFOA	%	101	80
Extracted ISTD 13 C ₅ PFNA	%	100	83
Extracted ISTD 13 C ₂ PFDA	%	101	86
Extracted ISTD 13 C2 PFUnDA	%	108	90
Extracted ISTD 13 C2 PFDoDA	%	111	98
Extracted ISTD 13 C2 PFTeDA	%	103	91
Extracted ISTD ¹³ C ₂ 4:2FTS	%	111	32
Extracted ISTD 13 C ₂ 6:2FTS	%	120	33
Extracted ISTD ¹³ C ₂ 8:2FTS	%	123	44
Extracted ISTD 13 C8 FOSA	%	103	81
Extracted ISTD d ₃ N MeFOSA	%	100	100
Extracted ISTD d ₅ N EtFOSA	%	102	100
Extracted ISTD d ₇ N MeFOSE	%	101	101
Extracted ISTD d ₉ N EtFOSE	%	99	93
Extracted ISTD d ₃ N MeFOSAA	%	112	68
Extracted ISTD ds N EtFOSAA	%	112	70
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01
Total Positive PFAS	μg/L	0.04	<0.01

Dissolved Gases in Water						
Our Reference		366179-1	366179-2	366179-3	366179-4	366179-5
Your Reference	UNITS	BH120	BH046R	BH126	S06	S02_s
Date Sampled		12/11/2024	12/11/2024	12/11/2024	12/11/2024	12/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/11/2024	15/11/2024	15/11/2024	15/11/2024	15/11/2024
Date analysed	-	15/11/2024	15/11/2024	15/11/2024	15/11/2024	15/11/2024
Methane	μg/L	<5	<5	400	1,800	<5

Dissolved Gases in Water			
Our Reference		366179-6	366179-7
Your Reference	UNITS	S02_d	BH715B
Date Sampled		12/11/2024	12/11/2024
Type of sample		Water	Water
Date prepared	-	15/11/2024	15/11/2024
Date analysed	-	15/11/2024	15/11/2024
Methane	μg/L	15	<5

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID based on draft method USEPA SOP RSK175
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL	.: VOCs i	n water			Du	ıplicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date Extracted	-			19/11/2024	[NT]		[NT]	[NT]	19/11/2024	
Date Analysed	-			19/11/2024	[NT]		[NT]	[NT]	19/11/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	90	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	102	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	QUALITY CONTROL: VOCs in water						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	100	[NT]		[NT]	[NT]	100		
Surrogate Toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	99		
Surrogate 4-Bromofluorobenzene	%		Org-023	99	[NT]		[NT]	[NT]	98		

QUALITY CONTE	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			19/11/2024	[NT]		[NT]	[NT]	19/11/2024		
Date analysed	-			19/11/2024	[NT]		[NT]	[NT]	19/11/2024		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	102		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	100	[NT]		[NT]	[NT]	100		
Surrogate Toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	99		
Surrogate 4-Bromofluorobenzene	%		Org-023	99	[NT]		[NT]	[NT]	98		

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366179-2	
Date extracted	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024	
Date analysed	-			13/11/2024	1	13/11/2024	14/11/2024		13/11/2024	14/11/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	[NT]	1	<50	<50	0	108	108	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	111	109	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	114	98	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	108	108	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	111	109	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	114	98	
Surrogate o-Terphenyl	%		Org-020	79	1	92	96	4	113	115	

QUAL	ITY CONTROL	: PAHs ir	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	366179-2
Date extracted	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Date analysed	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	14/11/2024
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	96
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	98
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	93
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	93
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	95
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	96
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	81
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	112
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	93	1	93	96	3	88	98

QUALITY CC	NTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	
Date analysed	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	95	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	80	80	0	102	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	65	65	0	98	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	102	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	92	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	98	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	3	3	0	116	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	19	19	0	91	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	98	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	240	250	4	101	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	3	3	0	101	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	26	26	0	119	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	90	
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	1	1	0	90	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	89	
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	10	10	0	93	

Envirolab Reference: 366179

QUALITY CO	NTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	366179-3
Date prepared	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Date analysed	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Iron-Total	μg/L	10	Metals-022	<10	1	1700	[NT]		99	#
Arsenic-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		94	93
Boron-Total	μg/L	20	Metals-022	<20	1	80	[NT]		91	112
Barium-Total	μg/L	1	Metals-022	<1	1	100	[NT]		96	#
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	<0.5	[NT]		101	106
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		98	100
Chromium-Total	μg/L	1	Metals-022	<1	1	5	[NT]		99	106
Copper-Total	μg/L	1	Metals-022	<1	1	29	[NT]		98	95
Cobalt-Total	μg/L	1	Metals-022	<1	1	21	[NT]		99	104
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	96	##
Manganese-Total	μg/L	5	Metals-022	<5	1	310	[NT]		100	107
Molybdenum-Total	μg/L	1	Metals-022	<1	1	5	[NT]		98	101
Nickel-Total	μg/L	1	Metals-022	<1	1	44	[NT]		97	100
Lead-Total	μg/L	1	Metals-022	<1	1	3	[NT]		96	87
Antimony-Total	μg/L	1	Metals-022	<1	1	2	[NT]		99	91
Selenium-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		95	91
Tin-Total	μg/L	1	Metals-022	<1	1	2	[NT]		105	87
Zinc-Total	μg/L	1	Metals-022	<1	1	46	[NT]		107	97

QUALITY CO	ONTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	2	13/11/2024	13/11/2024			[NT]
Date analysed	-			[NT]	2	13/11/2024	13/11/2024			[NT]
Iron-Total	μg/L	10	Metals-022	[NT]	2	5900	5900	0		[NT]
Arsenic-Total	μg/L	1	Metals-022	[NT]	2	8	8	0		[NT]
Boron-Total	μg/L	20	Metals-022	[NT]	2	50	50	0		[NT]
Barium-Total	μg/L	1	Metals-022	[NT]	2	100	100	0		[NT]
Beryllium-Total	μg/L	0.5	Metals-022	[NT]	2	0.9	0.9	0		[NT]
Cadmium-Total	μg/L	0.1	Metals-022	[NT]	2	<0.1	<0.1	0		[NT]
Chromium-Total	μg/L	1	Metals-022	[NT]	2	8	8	0		[NT]
Copper-Total	μg/L	1	Metals-022	[NT]	2	310	310	0		[NT]
Cobalt-Total	μg/L	1	Metals-022	[NT]	2	21	21	0		[NT]
Mercury-Total	μg/L	0.05	Metals-021	[NT]	2	<0.2	[NT]			[NT]
Manganese-Total	μg/L	5	Metals-022	[NT]	2	500	490	2		[NT]
Molybdenum-Total	μg/L	1	Metals-022	[NT]	2	4	4	0		[NT]
Nickel-Total	μg/L	1	Metals-022	[NT]	2	40	39	3		[NT]
Lead-Total	μg/L	1	Metals-022	[NT]	2	9	9	0		[NT]
Antimony-Total	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Selenium-Total	μg/L	1	Metals-022	[NT]	2	1	1	0		[NT]
Tin-Total	μg/L	1	Metals-022	[NT]	2	<1	<1	0		[NT]
Zinc-Total	μg/L	1	Metals-022	[NT]	2	53	55	4		[NT]

QUALITY CC	NTROL: Me	tals in Wa	aters - Total			Spike Re	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	[NT]
Date analysed	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	[NT]
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	0.07	0.08	13	97	[NT]

Envirolab Reference: 366179

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366179-2
Date prepared	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Date analysed	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	1.0	1.0	0	96	111
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.70	0.72	3	97	104
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	1.8			89	82
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	0.005	Inorg-118	<0.005	1	<0.005	<0.005	0	101	95
Trivalent Chromium, Cr ³⁺	mg/L	0.005	Inorg-118	<0.005	1	<0.005	<0.005	0	[NT]	[NT]

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366179-2
Date prepared	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Date analysed	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	200	[NT]		95	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	49	[NT]		89	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	3000	[NT]		98	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	420	[NT]		97	[NT]
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	1	2200	[NT]		[NT]	[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	660	660	0	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	660	660	0	114	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	630	600	5	115	#
Chloride, Cl	mg/L	1	Inorg-081	<1	1	6600	6400	3	109	#
Ionic Balance	%		Inorg-040	[NT]	1	-9.0	[NT]		[NT]	[NT]

QUALIT	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	2	13/11/2024	13/11/2024			[NT]
Date analysed	-			[NT]	2	13/11/2024	13/11/2024			[NT]
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	97	95	2		[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	22	22	0		[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	1100	1100	0		[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	2	120	120	0		[NT]
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	2	750	730	3		[NT]
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	<5	[NT]			[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	810	[NT]			[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	<5	[NT]			[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	2	810	[NT]			[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	2	370	[NT]			[NT]
Chloride, Cl	mg/L	1	Inorg-081	[NT]	2	1700	[NT]			[NT]
Ionic Balance	%		Inorg-040	[NT]	2	-5.0	[NT]			[NT]

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366179-2
Date prepared	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Date analysed	-			13/11/2024	1	13/11/2024	13/11/2024		13/11/2024	13/11/2024
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	98	99
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	97	97
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	99	97
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	95	97
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	101	95
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	100	94
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	96	95
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	95	97
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	94	93
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	96	95
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	102	103
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	96	98
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	94	98
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	96	97
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	97	99
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	88	89
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	86	85
4:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	100	99
6:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	94	97
8:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	95	97
10:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	99	118
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	102	101
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	99	96
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	98	94
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	98	103
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	103	100
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	101	97
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	94	92
Surrogate ¹³ C ₈ PFOS	%		Org-029	98	1	101	96	5	102	98
Surrogate ¹³ C ₂ PFOA	%		Org-029	104	1	104	107	3	100	106

QUALITY CO	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366179-2
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	104	1	100	100	0	103	103
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	107	1	102	99	3	106	104
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	105	1	98	100	2	98	103
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	104	1	46	46	0	104	74
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	105	1	75	74	1	104	90
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	106	1	89	86	3	104	98
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	105	1	87	86	1	101	97
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	101	1	83	83	0	101	89
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	108	1	92	89	3	103	94
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	104	1	93	94	1	104	97
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	109	1	98	93	5	107	101
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	112	1	99	102	3	103	95
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	105	1	104	100	4	101	94
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	108	1	37	37	0	104	58
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	109	1	37	37	0	107	51
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	110	1	48	50	4	114	63
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	112	1	85	84	1	104	94
Extracted ISTD d ₃ N MeFOSA	%		Org-029	104	1	99	100	1	100	101
Extracted ISTD d ₅ N EtFOSA	%		Org-029	102	1	103	100	3	101	102
Extracted ISTD d ₇ N MeFOSE	%		Org-029	105	1	104	95	9	105	101

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366179-2
Extracted ISTD d ₉ N EtFOSE	%		Org-029	97	1	95	95	0	101	99
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	110	1	71	72	1	104	76
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	107	1	75	73	3	107	81

Envirolab Reference: 366179

QUALITY CON	NTROL: Diss	olved Ga	ses in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			15/11/2024	1	15/11/2024	15/11/2024		15/11/2024	
Date analysed	-			15/11/2024	1	15/11/2024	15/11/2024		15/11/2024	
Methane	μg/L	5	AT-006	<5	1	<5	<5	0	90	

Envirolab Reference: 366179

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 366179

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 366179 Page | 40 of 41
Revision No: R00

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

All metals in water - total:

- # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.
- ## Spike recovery for this analyte was <20%, therefore the result is questionable (high uncertainty), possibly due to the sample matrix. The corresponding LCS recovery was with acceptance limits.
- The PQL for 366179-2 has been raised for Hg due to the low spike recovery/recoveries. This may reflect other samples where similar in matrix and similar analytical interferences occur.

ION_BALANCE:# Percent recovery is not applicable due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

All metals in wate - TRACE METALS: In theory the total metal content should be higher than the dissolved metal content. However, in some samples this is not the case. The sample has been re-analysed for both Total and Dissolved metals and results have been confirmed.

Envirolab Reference: 366179 Page | 41 of 41

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

CERTIFICATE OF ANALYSIS 366302

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	CTP Groundwater Monitoring
Number of Samples	3 Water
Date samples received	13/11/2024
Date completed instructions received	13/11/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	20/11/2024	
Date of Issue	20/11/2024	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

VOCs in water				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date Extracted	-	18/11/2024	18/11/2024	18/11/2024
Date Analysed	-	19/11/2024	19/11/2024	19/11/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1
Chloroform	μg/L	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1
Benzene	μg/L	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1

VOCs in water				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Bromoform	μg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
Styrene	μg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1
o-xylene	μg/L	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	98	98
Surrogate Toluene-d8	%	106	105	105
Surrogate 4-Bromofluorobenzene	%	112	111	113

vTRH(C6-C10)/BTEXN in Water				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date extracted	-	18/11/2024	18/11/2024	18/11/2024
Date analysed	-	19/11/2024	19/11/2024	19/11/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	98	98
Surrogate Toluene-d8	%	106	105	105
Surrogate 4-Bromofluorobenzene	%	112	111	113

svTRH (C10-C40) in Water				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date extracted	-	14/11/2024	14/11/2024	14/11/2024
Date analysed	-	15/11/2024	15/11/2024	15/11/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	250	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	140	<100	<100
Total +ve TRH (C10-C36)	μg/L	390	<50	<50
TRH >C10 - C16	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	340	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	340	<50	<50
Surrogate o-Terphenyl	%	87	81	81

Envirolab Reference: 366302

Page | 5 of 33 Revision No: R00

PAHs in Water				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date extracted	-	14/11/2024	14/11/2024	14/11/2024
Date analysed	-	15/11/2024	15/11/2024	15/11/2024
Naphthalene	μg/L	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	83	85	77

Envirolab Reference: 366302

All metals in water-dissolved				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	14/11/2024	14/11/2024	14/11/2024
Date analysed	-	14/11/2024	14/11/2024	14/11/2024
Iron-Dissolved	μg/L	30	20	350
Arsenic-Dissolved	μg/L	<1	<1	3
Boron-Dissolved	μg/L	50	210	30
Barium-Dissolved	μg/L	32	12	71
Beryllium-Dissolved	μg/L	<0.5	1	<0.5
Cadmium-Dissolved	μg/L	<0.1	0.2	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	12	29	1
Cobalt-Dissolved	μg/L	5	36	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	1,700	1,800	70
Molybdenum-Dissolved	μg/L	1	<1	4
Nickel-Dissolved	μg/L	5	36	1
Lead-Dissolved	μg/L	<1	<1	<1
Antimony-Dissolved	μg/L	1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	μg/L	91	82	4

Envirolab Reference: 366302

All metals in water - total				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	14/11/2024	14/11/2024	14/11/2024
Date analysed	-	14/11/2024	14/11/2024	14/11/2024
Iron-Total	μg/L	1,000	12,000	670
Arsenic-Total	μg/L	<1	4	3
Boron-Total	μg/L	70	220	50
Barium-Total	μg/L	35	73	82
Beryllium-Total	μg/L	<0.5	3	<0.5
Cadmium-Total	μg/L	<0.1	0.3	<0.1
Chromium-Total	μg/L	<1	10	<1
Copper-Total	μg/L	13	53	6
Cobalt-Total	μg/L	10	51	<1
Mercury-Total	μg/L	<0.05	<0.05	<0.05
Manganese-Total	μg/L	3,300	2,200	72
Molybdenum-Total	μg/L	1	<1	4
Nickel-Total	μg/L	8	54	2
Lead-Total	μg/L	1	24	<1
Antimony-Total	μg/L	1	<1	<1
Selenium-Total	μg/L	<1	<1	<1
Tin-Total	μg/L	<1	1	<1
Zinc-Total	μg/L	93	160	8

Envirolab Reference: 366302

Metals in Waters - Total				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	ВН36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	14/11/2024	14/11/2024	14/11/2024
Date analysed	-	14/11/2024	14/11/2024	14/11/2024
Phosphorus - Total	mg/L	0.1	1.4	1.3

Miscellaneous Inorganics				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024
Ammonia as N in water	mg/L	0.51	0.055	0.45
Nitrate as N in water	mg/L	0.40	0.18	0.01
Total Nitrogen in water	mg/L	1.3	0.6	1.1
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	<0.005	<0.005	<0.005
Trivalent Chromium, Cr ³⁺	mg/L	<0.005	<0.005	<0.005

lon Balance				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	13/11/2024	13/11/2024	13/11/2024
Date analysed	-	13/11/2024	13/11/2024	13/11/2024
Calcium - Dissolved	mg/L	26	2	19
Potassium - Dissolved	mg/L	5.8	8.0	9.0
Sodium - Dissolved	mg/L	110	390	140
Magnesium - Dissolved	mg/L	5.6	12	6.1
Hardness (calc) equivalent CaCO ₃	mg/L	87	53	73
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	120	100	100
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	120	100	100
Sulphate, SO4	mg/L	98	450	37
Chloride, Cl	mg/L	100	340	190
Ionic Balance	%	-3.0	-7.0	-2.0

Envirolab Reference: 366302

PFAS in Waters Extended				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	14/11/2024	14/11/2024	14/11/2024
Date analysed	-	14/11/2024	14/11/2024	14/11/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01	0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluorohexanoic acid	μg/L	0.01	<0.01	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	<0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	0.02
8:2 FTS	μg/L	<0.02	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	99	98	96
Surrogate ¹³ C ₂ PFOA	%	103	101	101
Extracted ISTD ¹³ C ₃ PFBS	%	106	104	102
Extracted ISTD ¹⁸ O ₂ PFHxS	%	110	106	105
Extracted ISTD ¹³ C ₄ PFOS	%	107	106	110
Extracted ISTD ¹³ C ₄ PFBA	%	83	58	92

PFAS in Waters Extended				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	103	101	103
Extracted ISTD 13 C ₂ PFHxA	%	105	102	101
Extracted ISTD 13 C4 PFHpA	%	108	108	106
Extracted ISTD 13 C ₄ PFOA	%	108	103	106
Extracted ISTD 13 C ₅ PFNA	%	111	106	106
Extracted ISTD 13 C ₂ PFDA	%	110	106	108
Extracted ISTD 13 C2 PFUnDA	%	114	107	113
Extracted ISTD 13 C2 PFDoDA	%	111	106	107
Extracted ISTD 13 C2 PFTeDA	%	105	96	108
Extracted ISTD 13 C ₂ 4:2FTS	%	111	90	102
Extracted ISTD 13 C ₂ 6:2FTS	%	112	85	96
Extracted ISTD 13 C2 8:2FTS	%	115	92	102
Extracted ISTD 13 C8 FOSA	%	109	105	109
Extracted ISTD d ₃ N MeFOSA	%	103	102	105
Extracted ISTD d ₅ N EtFOSA	%	103	101	107
Extracted ISTD d ₇ N MeFOSE	%	113	106	112
Extracted ISTD d ₉ N EtFOSE	%	106	102	103
Extracted ISTD d ₃ N MeFOSAA	%	112	98	103
Extracted ISTD ds N EtFOSAA	%	113	98	105
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01	0.01
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01	0.01
Total Positive PFAS	μg/L	0.01	<0.01	0.03

Dissolved Gases in Water				
Our Reference		366302-1	366302-2	366302-3
Your Reference	UNITS	BH51	BH36	BH019
Date Sampled		13/11/2024	13/11/2024	13/11/2024
Type of sample		Water	Water	Water
Date prepared	-	19/11/2024	19/11/2024	19/11/2024
Date analysed	-	19/11/2024	19/11/2024	19/11/2024
Methane	μg/L	<5	<5	320

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID based on draft method USEPA SOP RSK175
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.

Envirolab Reference: 366302

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL	.: VOCs i	n water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date Extracted	-			18/11/2024	[NT]		[NT]	[NT]	18/11/2024	
Date Analysed	-			19/11/2024	[NT]		[NT]	[NT]	19/11/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	90	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	90	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	82	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	80	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	105	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	QUALITY CONTROL: VOCs in water							Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	99	[NT]		[NT]	[NT]	99		
Surrogate Toluene-d8	%		Org-023	106	[NT]		[NT]	[NT]	107		
Surrogate 4-Bromofluorobenzene	%		Org-023	111	[NT]		[NT]	[NT]	109		

Envirolab Reference: 366302

QUALITY CONTR	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			18/11/2024	[NT]		[NT]	[NT]	18/11/2024		
Date analysed	-			19/11/2024	[NT]		[NT]	[NT]	19/11/2024		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	99		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	99		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	105		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	99	[NT]		[NT]	[NT]	99		
Surrogate Toluene-d8	%		Org-023	106	[NT]		[NT]	[NT]	107		
Surrogate 4-Bromofluorobenzene	%		Org-023	111	[NT]		[NT]	[NT]	109		

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	366302-2
Date extracted	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	14/11/2024
Date analysed	-			14/11/2024	1	15/11/2024	15/11/2024		14/11/2024	15/11/2024
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	94	119
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	250	240	4	98	98
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	140	130	7	86	124
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	94	119
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	340	340	0	98	98
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	86	124
Surrogate o-Terphenyl	%		Org-020	76	1	87	92	6	94	95

QUAL	ITY CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366302-2
Date extracted	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	14/11/2024
Date analysed	-			15/11/2024	1	15/11/2024	15/11/2024		15/11/2024	15/11/2024
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	102
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	89
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	91
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	91
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	98
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	96
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	92
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	87
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	88	1	83	94	12	93	99

Envirolab Reference: 366302

QUALITY CO	NTROL: All m	etals in w	ater-dissolved			Du	ıplicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			14/11/2024	[NT]		[NT]	[NT]	14/11/2024	
Date analysed	-			14/11/2024	[NT]		[NT]	[NT]	14/11/2024	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	96	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Boron-Dissolved	μg/L	20	Metals-022	<20	[NT]		[NT]	[NT]	89	
Barium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	97	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	96	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	98	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Antimony-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	
Tin-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	

Envirolab Reference: 366302

QUALITY CO	NTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	
Date analysed	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	
Iron-Total	μg/L	10	Metals-022	<10	1	1000	[NT]		112	
Arsenic-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		97	
Boron-Total	μg/L	20	Metals-022	<20	1	70	[NT]		107	
Barium-Total	μg/L	1	Metals-022	<1	1	35	[NT]		117	
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	<0.5	[NT]		103	
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		97	
Chromium-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		120	
Copper-Total	μg/L	1	Metals-022	<1	1	13	[NT]		115	
Cobalt-Total	μg/L	1	Metals-022	<1	1	10	[NT]		120	
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	99	
Manganese-Total	μg/L	5	Metals-022	<5	1	3300	[NT]		113	
Molybdenum-Total	μg/L	1	Metals-022	<1	1	1	[NT]		105	
Nickel-Total	μg/L	1	Metals-022	<1	1	8	[NT]		115	
Lead-Total	μg/L	1	Metals-022	<1	1	1	[NT]		104	
Antimony-Total	μg/L	1	Metals-022	<1	1	1	[NT]		103	
Selenium-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		95	
Tin-Total	μg/L	1	Metals-022	<1	1	<1	[NT]		110	
Zinc-Total	μg/L	1	Metals-022	<1	1	93	[NT]		116	

Envirolab Reference: 366302

QUALITY CONTROL: Metals in Waters - Total						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			14/11/2024	[NT]		[NT]	[NT]	14/11/2024	
Date analysed	-			14/11/2024	[NT]		[NT]	[NT]	14/11/2024	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	108	

Envirolab Reference: 366302

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			13/11/2024	[NT]		[NT]	[NT]	13/11/2024	
Date analysed	-			13/11/2024	[NT]		[NT]	[NT]	13/11/2024	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]		[NT]	[NT]	100	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]		[NT]	[NT]	104	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	[NT]		[NT]	[NT]	114	
Hexavalent Chromium, Cr ⁶⁺ (dissolved)	mg/L	0.005	Inorg-118	<0.005	[NT]		[NT]	[NT]	109	
Trivalent Chromium, Cr ³⁺	mg/L	0.005	Inorg-118	<0.005	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]

QUALI	TY CONTRO	L: Ion Ba	lance			Duplicate Spike F				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			13/11/2024	[NT]		[NT]	[NT]	13/11/2024	
Date analysed	-			13/11/2024	[NT]		[NT]	[NT]	13/11/2024	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	100	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	93	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	99	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	102	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	108	
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]		[NT]	[NT]	114	
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]		[NT]	[NT]	115	

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366302-2
Date prepared	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	14/11/2024
Date analysed	-			14/11/2024	1	14/11/2024	14/11/2024		14/11/2024	14/11/2024
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	100	96
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	104	100
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	102	100
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	103	96
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	94	97
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	96	98
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	96	96
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	97	99
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	1	0.01	0.01	0	95	95
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	96	93
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	93	91
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	100	101
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	96	102
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	98	97
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	96	104
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	92	94
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	91	90
4:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	90	97
6:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	98	95
8:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	95	90
10:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	99	104
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	97	101
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	94	95
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	89	91
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	102	109
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	98	99
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	102	101
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	93	101
Surrogate ¹³ C ₈ PFOS	%		Org-029	100	1	99	99	0	97	101
Surrogate ¹³ C ₂ PFOA	%		Org-029	102	1	103	101	2	103	101

QUALITY CO	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366302-2
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	101	1	106	102	4	96	103
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	109	1	110	105	5	100	107
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	103	1	107	107	0	103	103
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	104	1	83	82	1	105	58
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	104	1	103	101	2	103	97
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	106	1	105	101	4	101	103
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	105	1	108	106	2	103	105
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	106	1	108	109	1	105	104
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	107	1	111	111	0	104	102
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	103	1	110	107	3	107	100
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	105	1	114	112	2	106	106
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	105	1	111	109	2	102	95
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	96	1	105	109	4	101	96
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	111	1	111	111	0	109	86
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	108	1	112	118	5	103	81
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	113	1	115	113	2	111	95
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	108	1	109	109	0	105	99
Extracted ISTD d ₃ N MeFOSA	%		Org-029	104	1	103	106	3	102	101
Extracted ISTD d ₅ N EtFOSA	%		Org-029	104	1	103	104	1	104	100
Extracted ISTD d ₇ N MeFOSE	%		Org-029	106	1	113	104	8	103	99

Envirolab Reference: 366302

QUALITY CONTROL: PFAS in Waters Extended						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366302-2
Extracted ISTD d ₉ N EtFOSE	%		Org-029	102	1	106	104	2	103	102
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	108	1	112	111	1	105	96
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	107	1	113	115	2	110	96

Envirolab Reference: 366302

QUALITY CONTROL: Dissolved Gases in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			19/11/2024	1	19/11/2024	19/11/2024		19/11/2024	
Date analysed	-			19/11/2024	1	19/11/2024	19/11/2024		19/11/2024	
Methane	μg/L	5	AT-006	<5	1	<5	<5	0	100	

Envirolab Reference: 366302

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 366302

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 366302 Page | 32 of 33 Revision No: R00

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

VOCs in water - Sample 366302-3 was received with headspace, analytical results may be affected.

vTRH & BTEXN in Water NEPM - Sample 366302-3 was received with headspace, analytical results may be affected.

Envirolab Reference: 366302

Revision No: R00

Page | 33 of 33

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

CERTIFICATE OF ANALYSIS 366754

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	CTP Groundwater Monitoring
Number of Samples	5 Water
Date samples received	19/11/2024
Date completed instructions received	19/11/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	27/11/2024				
Date of Issue	27/11/2024				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

VOCs in water						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date Extracted	-	20/11/2024	20/11/2024	20/11/2024	20/11/2024	20/11/2024
Date Analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	99	96	96	95
Surrogate Toluene-d8	%	98	98	97	98	96
Surrogate 4-Bromofluorobenzene	%	101	97	93	91	87

vTRH(C6-C10)/BTEXN in Water						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/11/2024	20/11/2024	20/11/2024	20/11/2024	20/11/2024
Date analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	99	96	96	95
Surrogate Toluene-d8	%	98	98	97	98	96
Surrogate 4-Bromofluorobenzene	%	101	97	93	91	87

svTRH (C10-C40) in Water						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	22/11/2024	22/11/2024	22/11/2024	22/11/2024	22/11/2024
TRH C ₁₀ - C ₁₄	μg/L	54	<50	<50	<50	63
TRH C ₁₅ - C ₂₈	μg/L	380	<100	<100	<100	1,300
TRH C ₂₉ - C ₃₆	μg/L	350	<100	<100	<100	1,400
Total +ve TRH (C10-C36)	μg/L	790	<50	<50	<50	2,800
TRH >C ₁₀ - C ₁₆	μg/L	72	<50	<50	<50	110
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	72	<50	<50	<50	110
TRH >C ₁₆ - C ₃₄	μg/L	640	<100	<100	<100	2,400
TRH >C ₃₄ - C ₄₀	μg/L	120	<100	<100	<100	880
Total +ve TRH (>C10-C40)	μg/L	830	<50	<50	<50	3,300
Surrogate o-Terphenyl	%	89	80	82	92	104

PAHs in Water						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	22/11/2024	22/11/2024	22/11/2024	22/11/2024	22/11/2024
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	0.7
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	0.2
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	0.6
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	4.0
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	2.7
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	18
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	25
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	9.4
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	13
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	34
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	27
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	14
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	4.9
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	15
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	38
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1	170
Surrogate p-Terphenyl-d14	%	75	77	76	80	69

All metals in water-dissolved						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Boron-Dissolved	μg/L	80	50	90	20	30
Barium-Dissolved	μg/L	370	24	35	41	21
Beryllium-Dissolved	μg/L	<0.5	2	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	0.3	0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	1	<1	2	<1
Copper-Dissolved	μg/L	2	3	3	6	8
Cobalt-Dissolved	μg/L	<1	67	32	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	22	3,900	3,100	<5	<5
Molybdenum-Dissolved	μg/L	<1	<1	<1	2	1
Nickel-Dissolved	μg/L	1	65	28	<1	1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Antimony-Dissolved	μg/L	<1	<1	<1	2	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	32	470	69	3	6
Iron-Dissolved	μg/L	<10	4,400	<10	<10	20

All metals in water - total						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Arsenic-Total	μg/L	3	6	8	<1	<1
Boron-Total	μg/L	90	40	90	20	30
Barium-Total	μg/L	590	210	1,200	49	38
Beryllium-Total	μg/L	0.7	11	4	<0.5	<0.5
Cadmium-Total	μg/L	<0.1	0.5	0.7	<0.1	<0.1
Chromium-Total	μg/L	5	23	14	3	4
Copper-Total	μg/L	26	130	80	12	25
Cobalt-Total	μg/L	2	79	240	<1	1
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Total	μg/L	89	4,300	8,600	17	30
Molybdenum-Total	μg/L	<1	<1	<1	2	1
Nickel-Total	μg/L	3	87	68	2	6
Lead-Total	μg/L	13	24	31	1	10
Antimony-Total	μg/L	1	<1	<1	2	1
Selenium-Total	μg/L	<1	3	3	<1	<1
Tin-Total	μg/L	<1	<1	<1	<1	1
Zinc-Total	μg/L	78	750	340	13	46
Iron-Total	μg/L	15,000	33,000	17,000	360	1,800

Metals in Waters - Total						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Phosphorus - Total	mg/L	0.2	0.90	0.71	0.06	0.2

Miscellaneous Inorganics						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Date analysed	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Ammonia as N in water	mg/L	0.039	0.18	0.085	0.011	0.009
Nitrate as N in water	mg/L	0.40	0.007	0.008	0.87	0.55
Total Nitrogen in water	mg/L	0.4	0.5	0.3	1.0	1.2
Hexavalent Chromium, Cr6+ Low Level	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Trivalent Chromium, Cr ³⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Ion Balance						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Date analysed	-	19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Calcium - Dissolved	mg/L	46	22	45	110	21
Potassium - Dissolved	mg/L	5.4	6.6	5.0	4	4
Sodium - Dissolved	mg/L	25	550	85	20	25
Magnesium - Dissolved	mg/L	3	29	11	3	2
Hardness (calc) equivalent CaCO₃	mg/L	120	180	160	290	62
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	190	36	120	68	68
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	190	36	120	68	68
Sulphate, SO4	mg/L	15	440	140	220	25
Chloride, Cl	mg/L	14	730	81	42	39
Ionic Balance	%	-10	-5.0	-4.0	-3.0	-10

PFAS in Waters Extended						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	0.03	0.03	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01	0.02	<0.01	<0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.04	<0.02	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	<0.02	<0.02	0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	<0.01	0.01	0.01	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	<0.01	0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	0.01	<0.01	0.04	<0.01	<0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	105	97	104	98	102
Surrogate ¹³ C ₂ PFOA	%	103	102	105	112	88
Extracted ISTD 13 C ₃ PFBS	%	101	83	95	87	97
Extracted ISTD 18 O ₂ PFHxS	%	100	100	97	94	101
Extracted ISTD ¹³ C ₄ PFOS	%	93	98	97	97	100
Extracted ISTD 13 C4 PFBA	%	115	48	101	102	107

PFAS in Waters Extended						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	111	100	107	108	109
Extracted ISTD ¹³ C ₂ PFHxA	%	101	100	101	97	101
Extracted ISTD ¹³ C ₄ PFHpA	%	104	105	105	107	106
Extracted ISTD ¹³ C ₄ PFOA	%	81	78	82	81	86
Extracted ISTD ¹³ C ₅ PFNA	%	95	91	95	96	99
Extracted ISTD ¹³ C ₂ PFDA	%	103	99	106	106	108
Extracted ISTD ¹³ C ₂ PFUnDA	%	98	96	100	100	103
Extracted ISTD 13 C2 PFDoDA	%	90	88	88	92	87
Extracted ISTD ¹³ C ₂ PFTeDA	%	77	81	83	73	84
Extracted ISTD 13 C ₂ 4:2FTS	%	100	76	102	112	107
Extracted ISTD ¹³ C ₂ 6:2FTS	%	103	92	113	113	113
Extracted ISTD ¹³ C ₂ 8:2FTS	%	115	76	105	108	115
Extracted ISTD ¹³ C ₈ FOSA	%	108	99	102	100	106
Extracted ISTD d ₃ N MeFOSA	%	111	110	109	109	109
Extracted ISTD d₅ N EtFOSA	%	104	97	99	97	99
Extracted ISTD d ₇ N MeFOSE	%	116	115	114	112	116
Extracted ISTD d ₉ N EtFOSE	%	93	91	90	88	93
Extracted ISTD d ₃ N MeFOSAA	%	85	76	85	84	90
Extracted ISTD d₅ N EtFOSAA	%	97	88	95	98	101
Total Positive PFHxS & PFOS	μg/L	<0.01	0.03	0.04	<0.01	<0.01
Total Positive PFOA & PFOS	μg/L	0.01	<0.01	0.05	<0.01	<0.01
Total Positive PFAS	μg/L	0.01	0.03	0.10	0.03	0.01

Dissolved Gases in Water						
Our Reference		366754-1	366754-2	366754-3	366754-4	366754-5
Your Reference	UNITS	BH050s	BH035s	BH009s	BH038	BH044
Date Sampled		19/11/2024	19/11/2024	19/11/2024	19/11/2024	19/11/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Date analysed	-	21/11/2024	21/11/2024	21/11/2024	21/11/2024	21/11/2024
Methane	μg/L	<5	11	54	<5	<5

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID based on draft method USEPA SOP RSK175
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCl.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Metals-022	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL	.: VOCs i	n water			Du	ıplicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date Extracted	-			20/11/2024	[NT]		[NT]	[NT]	20/11/2024	
Date Analysed	-			21/11/2024	[NT]		[NT]	[NT]	21/11/2024	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	114	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	116	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	113	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	110	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	113	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	117	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	110	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	111	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	L: VOCs ir	n water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112		
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	97	[NT]		[NT]	[NT]	101		
Surrogate Toluene-d8	%		Org-023	100	[NT]		[NT]	[NT]	99		
Surrogate 4-Bromofluorobenzene	%		Org-023	120	[NT]		[NT]	[NT]	97		

QUALITY CONTR	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	ıplicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]	
Date extracted	-			20/11/2024	[NT]		[NT]	[NT]	20/11/2024		
Date analysed	-			21/11/2024	[NT]		[NT]	[NT]	21/11/2024		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	111		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	111		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	110		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	113		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	110		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	111		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	97	[NT]		[NT]	[NT]	101		
Surrogate Toluene-d8	%		Org-023	100	[NT]		[NT]	[NT]	99		
Surrogate 4-Bromofluorobenzene	%		Org-023	120	[NT]		[NT]	[NT]	97		

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/11/2024	[NT]		[NT]	[NT]	21/11/2024	
Date analysed	-			21/11/2024	[NT]		[NT]	[NT]	21/11/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	97	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	97	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	76	[NT]	[NT]	[NT]	[NT]	119	[NT]

QUAL	ITY CONTROL	L: PAHs ir	n Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/11/2024	[NT]		[NT]	[NT]	21/11/2024	
Date analysed	-			22/11/2024	[NT]		[NT]	[NT]	22/11/2024	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	64	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	62	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	68	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	71	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	71	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	72	[NT]		[NT]	[NT]	69	

QUALITY CON	NTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	366754-4
Date prepared	-			21/11/2024	1	21/11/2024	21/11/2024		21/11/2024	21/11/2024
Date analysed	-			21/11/2024	1	21/11/2024	21/11/2024		21/11/2024	21/11/2024
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	88	91
Boron-Dissolved	μg/L	20	Metals-022	<20	1	80	80	0	95	76
Barium-Dissolved	μg/L	1	Metals-022	<1	1	370	370	0	92	87
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	97	94
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	89	91
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	104
Copper-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	98	98
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	97	101
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		107	94
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	22	22	0	98	107
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	96
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	1	1	0	96	99
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	88	84
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	88	84
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	88	90
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	91
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	32	33	3	97	101
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	96	100

Envirolab Reference: 366754

QUALITY C	ONTROL: All m	netals in w	ater-dissolved			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	3	21/11/2024	21/11/2024			[NT]
Date analysed	-			[NT]	3	21/11/2024	21/11/2024			[NT]
Arsenic-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Boron-Dissolved	μg/L	20	Metals-022	[NT]	3	90	[NT]			[NT]
Barium-Dissolved	μg/L	1	Metals-022	[NT]	3	35	[NT]			[NT]
Beryllium-Dissolved	μg/L	0.5	Metals-022	[NT]	3	<0.5	[NT]			[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	[NT]	3	0.1	[NT]			[NT]
Chromium-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Copper-Dissolved	μg/L	1	Metals-022	[NT]	3	3	[NT]			[NT]
Cobalt-Dissolved	μg/L	1	Metals-022	[NT]	3	32	[NT]			[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	[NT]	3	<0.05	<0.05	0		[NT]
Manganese-Dissolved	μg/L	5	Metals-022	[NT]	3	3100	[NT]			[NT]
Molybdenum-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Nickel-Dissolved	μg/L	1	Metals-022	[NT]	3	28	[NT]			[NT]
Lead-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Antimony-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Selenium-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Tin-Dissolved	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Zinc-Dissolved	μg/L	1	Metals-022	[NT]	3	69	[NT]			[NT]
Iron-Dissolved	μg/L	10	Metals-022	[NT]	3	<10	[NT]			[NT]

QUALITY CO	ONTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	366754-4
Date prepared	-			21/11/2024	2	21/11/2024	21/11/2024		21/11/2024	21/11/2024
Date analysed	-			21/11/2024	2	21/11/2024	21/11/2024		21/11/2024	21/11/2024
Arsenic-Total	μg/L	1	Metals-022	<1	2	6	6	0	86	92
Boron-Total	μg/L	20	Metals-022	<20	2	40	40	0	89	87
Barium-Total	μg/L	1	Metals-022	<1	2	210	230	9	90	87
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	2	11	12	9	98	99
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	2	0.5	0.5	0	92	92
Chromium-Total	μg/L	1	Metals-022	<1	2	23	22	4	94	94
Copper-Total	μg/L	1	Metals-022	<1	2	130	130	0	94	93
Cobalt-Total	μg/L	1	Metals-022	<1	2	79	79	0	94	94
Mercury-Total	μg/L	0.05	Metals-021	<0.05	2	<0.05	[NT]		112	97
Manganese-Total	μg/L	5	Metals-022	<5	2	4300	4400	2	95	96
Molybdenum-Total	μg/L	1	Metals-022	<1	2	<1	<1	0	93	94
Nickel-Total	μg/L	1	Metals-022	<1	2	87	88	1	93	92
Lead-Total	μg/L	1	Metals-022	<1	2	24	24	0	89	84
Antimony-Total	μg/L	1	Metals-022	<1	2	<1	<1	0	93	88
Selenium-Total	μg/L	1	Metals-022	<1	2	3	3	0	90	89
Tin-Total	μg/L	1	Metals-022	<1	2	<1	<1	0	96	93
Zinc-Total	μg/L	1	Metals-022	<1	2	750	750	0	93	99
Iron-Total	μg/L	10	Metals-022	<10	2	33000	31000	6	94	#

Envirolab Reference: 366754

QUALITY	CONTROL: All	metals in	water - total			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	3	21/11/2024	21/11/2024			[NT]	
Date analysed	-			[NT]	3	21/11/2024	21/11/2024			[NT]	
Arsenic-Total	μg/L	1	Metals-022	[NT]	3	8	[NT]			[NT]	
Boron-Total	μg/L	20	Metals-022	[NT]	3	90	[NT]			[NT]	
Barium-Total	μg/L	1	Metals-022	[NT]	3	1200	[NT]			[NT]	
Beryllium-Total	μg/L	0.5	Metals-022	[NT]	3	4	[NT]			[NT]	
Cadmium-Total	μg/L	0.1	Metals-022	[NT]	3	0.7	[NT]			[NT]	
Chromium-Total	μg/L	1	Metals-022	[NT]	3	14	[NT]			[NT]	
Copper-Total	μg/L	1	Metals-022	[NT]	3	80	[NT]			[NT]	
Cobalt-Total	μg/L	1	Metals-022	[NT]	3	240	[NT]			[NT]	
Mercury-Total	μg/L	0.05	Metals-021	[NT]	3	<0.05	<0.05	0		[NT]	
Manganese-Total	μg/L	5	Metals-022	[NT]	3	8600	[NT]			[NT]	
Molybdenum-Total	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]	
Nickel-Total	μg/L	1	Metals-022	[NT]	3	68	[NT]			[NT]	
Lead-Total	μg/L	1	Metals-022	[NT]	3	31	[NT]			[NT]	
Antimony-Total	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]	
Selenium-Total	μg/L	1	Metals-022	[NT]	3	3	[NT]			[NT]	
Tin-Total	μg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]	
Zinc-Total	μg/L	1	Metals-022	[NT]	3	340	[NT]			[NT]	
Iron-Total	μg/L	10	Metals-022	[NT]	3	17000	[NT]			[NT]	

Envirolab Reference: 366754

QUALITY CC	NTROL: Me	tals in Wa	aters - Total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366754-3
Date prepared	-			21/11/2024	2	21/11/2024	21/11/2024		21/11/2024	21/11/2024
Date analysed	-			21/11/2024	2	21/11/2024	21/11/2024		21/11/2024	21/11/2024
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	2	0.90	0.87	3	82	90

Envirolab Reference: 366754

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366754-1
Date prepared	-			19/11/2024	1	19/11/2024	19/11/2024		19/11/2024	19/11/2024
Date analysed	-			19/11/2024	1	19/11/2024	19/11/2024		19/11/2024	19/11/2024
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.039	[NT]		105	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.40	[NT]		101	[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.4	[NT]		112	106
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	<0.001	<0.001	0	97	[NT]
Trivalent Chromium, Cr ³⁺	mg/L	0.005	Inorg-118	<0.005	1	<0.005	<0.005	0	[NT]	[NT]

QUALITY CO	NTROL: Mis	cellaneοι	ıs Inorganics			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	366754-5
Date prepared	-				4	19/11/2024	19/11/2024			19/11/2024
Date analysed	-				4	19/11/2024	19/11/2024			19/11/2024
Ammonia as N in water	mg/L	0.005	Inorg-057		4	0.011	0.011	0		125
Nitrate as N in water	mg/L	0.005	Inorg-055		4	0.87	0.85	2		108
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		4	1.0	[NT]			[NT]
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118		4	<0.001	[NT]			92
Trivalent Chromium, Cr ³⁺	mg/L	0.005	Inorg-118		4	<0.005	[NT]			[NT]

QUALIT	Y CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	366754-3
Date prepared	-			19/11/2024	2	19/11/2024	19/11/2024		19/11/2024	19/11/2024
Date analysed	-			19/11/2024	2	19/11/2024	19/11/2024		19/11/2024	19/11/2024
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	22	[NT]		104	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	6.6	[NT]		92	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	550	[NT]		96	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	29	[NT]		99	
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	2	180	[NT]		[NT]	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	2	<5	[NT]		[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	2	36	[NT]		[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	2	<5	[NT]		[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	2	36	[NT]		101	
Sulphate, SO4	mg/L	1	Inorg-081	<1	2	440	440	0	109	#
Chloride, Cl	mg/L	1	Inorg-081	<1	2	730	730	0	108	83
Ionic Balance	%		Inorg-040	[NT]	2	-5.0	[NT]		[NT]	

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	366754-5
Date prepared	-			[NT]	4	19/11/2024	19/11/2024			19/11/2024
Date analysed	-			[NT]	4	19/11/2024	19/11/2024			19/11/2024
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	110	110	0		108
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	4	4	0		91
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	20	20	0		81
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	3	3	0		103
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	4	290	290	0		[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	<5	<5	0		[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	68	72	6		[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	<5	<5	0		[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	68	72	6		[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	4	220	[NT]			[NT]
Chloride, Cl	mg/L	1	Inorg-081	[NT]	4	42	[NT]			[NT]
Ionic Balance	%		Inorg-040	[NT]	4	-3.0	[NT]			[NT]

QUALITY CON	ITROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			21/11/2024	1	21/11/2024	21/11/2024		21/11/2024	
Date analysed	-			21/11/2024	1	21/11/2024	21/11/2024		21/11/2024	
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	103	
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	100	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	86	
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	111	
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	93	
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	92	
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	94	
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	93	
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	89	
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	90	
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	1	0.01	<0.01	0	101	
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	103	
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	86	
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	83	
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	101	
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	108	
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	82	
4:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	87	
6:2 FTS	μg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	97	
8:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	94	
10:2 FTS	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	138	
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	90	
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	99	
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	106	
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	86	
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	104	
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	118	
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	1	<0.02	<0.02	0	90	
Surrogate ¹³ C ₈ PFOS	%		Org-029	98	1	105	99	6	97	
Surrogate ¹³ C ₂ PFOA	%		Org-029	107	1	103	98	5	105	

QUALITY CO	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	105	1	101	102	1	106	[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	110	1	100	102	2	105	[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	99	1	93	98	5	100	[NT]
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	126	1	115	114	1	121	[NT]
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	128	1	111	109	2	123	[NT]
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	107	1	101	101	0	107	[NT]
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	114	1	104	110	6	114	[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	84	1	81	85	5	82	[NT]
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	101	1	95	99	4	95	[NT]
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	110	1	103	101	2	115	[NT]
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	109	1	98	95	3	105	[NT]
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	97	1	90	85	6	88	[NT]
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	96	1	77	76	1	88	[NT]
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	120	1	100	104	4	113	[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	131	1	103	108	5	119	[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	128	1	115	113	2	119	[NT]
Extracted ISTD 13 C ₈ FOSA	%		Org-029	116	1	108	103	5	111	[NT]
Extracted ISTD d ₃ N MeFOSA	%		Org-029	117	1	111	109	2	115	[NT]
Extracted ISTD d ₅ N EtFOSA	%		Org-029	99	1	104	100	4	98	[NT]
Extracted ISTD d ₇ N MeFOSE	%		Org-029	116	1	116	109	6	123	[NT]

QUALITY CON	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	91	1	93	90	3	91	[NT]
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	89	1	85	86	1	90	[NT]
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	110	1	97	98	1	113	[NT]

Envirolab Reference: 366754

QUALITY CON	NTROL: Diss	olved Ga	ses in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			21/11/2024	1	21/11/2024	21/11/2024		21/11/2024	
Date analysed	-			21/11/2024	1	21/11/2024	21/11/2024		21/11/2024	
Methane	μg/L	5	AT-006	<5	1	<5	<5	0	99	

Envirolab Reference: 366754

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 366754

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

ION_BALANCE: # Percent recovery is not applicable due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

All metals in water - total - # Percent recovery is not applicable due to the high concentration of the element in the sample. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 366754 Page | 35 of 35

Revision No:

R00

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL NO: BH-46R af

Project No: CF AFIV Project Name: Gauging Performed By: Gauging Method : Bore Depth: 17-63m TOC LNAPL Present: Y / N Time: 15. 16 TOC Depth to LNAPL: _(If yes, thickness): SWL: DNAPL Present: Y / N (If yes, thickness): Visual confirmation with bailer: Y / N Maintainance required : Equipmnet: Rainfall past 24 hrs(mm): **Purging / Development** Well Diameter: Performed By: Purge Method : Time Started : SWL (start): Volume Removed: Bore Depth (start): Discharge Rate: Bore Depth (end) : Time Stopped: SWL (end): Comments: NAPL Present : Y / N (If yes, thickness): Date: 12 /8/24 Well Diameter: Sampling Method: Time Started : Sampling Depth: Time Stopped: SWL (start): Tubing Type : SWL (end): Comments: Equipment: Duplicate Sample Collected? Duplicate Sample ID: Field Analyses Redax Volume Comments (colour, turbidity pН Removed (L) odours, sheen etc) (C) (niV) 9:34 5913 18.8 113.8 95.2 % 15.16 ABIC TURBU Stabilisation Criteria +/- 3% **Well Volume Calculations** 300mm Conversion Factor 196.3 25mm 50mm 100mm 125mm 150mm 200mm 250mm 0.98 31.4 TOTAL WELL DEPTH (-) WATER LEVEL (=) WATER COLUMN

1-1-63

M(-) 15-16

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL NO STW-PK OSI

Gauging Method: Time: Time: SWL: J 26	Bore Depth:		Gauging Method : Time : SWL :	9.30	•			Diffico Dy .			Diameter:	
Comments: Comments Comments Cif yes, thickness);	ONAPL Present: Y / N (If yes, thickness): Visual confirmation with bailer: Y / N Rainfall past 24 hrs(mm):		SWL	9.60						/ell	Diameter ,	
Comments: Comments Comments Cif yes, thickness);	DNAPL Present: Y / N (If yes, thickness): Visual confirmation with bailer: Y / N		SWL			E	ore Depth :_	10.06	m700	LNAPL	Present : Y	1 1
Comments: Comments Cityes, thickness Cityes, thickness Cityes, thickness Cityes Comments Cityes Comments Cityes Comments Cityes Cit	DNAPL Present: Y / N (If yes, thickness): Visual confirmation with bailer: Y / N Rainfall past 24 hrs(mm): Performed By: Well Diameter: SWL (start): SWL (end): Discharge Rate: Bore Depth (start): NAPL Present: Y / N (If yes, thickness): Performed By: Well Diameter: Sampling Depth: SWL (start): SWL (start): SWL (start): SWL (start): SWL (end): Discharge Rate: Sampling Depth: SWL (start): SWL (end): Temp Redox Dissolved Oxygen SWL Comments (colour, turbin odours, sheen atc) Redox Dissolved Oxygen SWL (mg/L) (mg/L) (mg/L) (mg/L) SWL (SAS COMMENTS (Colour, Subspecific Colour, S	Mainta	A STATE OF THE STA	4.26	~~							
Maintainance required : Visual confirmation with bailer: Equipment: Rainfall past Z4 hrs(mm): Date: Performed By: Well Diameter: Purge Method: SWL (start): Volume Removed: Bore Depth (start): Time Stopped: SWL (end): Discharge Rate: Bore Depth (end): NAPL Present: (If yes, thickness): Sampling Date: Performed By: Well Diameter: (If yes, thickness): Sampling Method: Sampling Depth: SWL (start): SWL (start): SWL (start): SWL (end): Comments: SWL (end): S	Visual confirmation with bailer: Y / N Rainfall past 24 hrs(mm): Performed By: Well Diameter: SWL (start): Volume Removed: Bore Depth (start): Bore Depth (end): NAPL Present: Y / N (If yes, thickness): Performed By: Well Diameter: SWL (start): SWL (end): Discharge Rate: Bore Depth (end): NAPL Present: Y / N (If yes, thickness): Performed By: Well Diameter: Sampling Depth: SWL (start): SWL (end):	Mainta	Comments :							DNAPI	Present : Y	/ /
Maintainance required Equipment: Rainfall past 24 hrs(mm): Purpling / Development Date: Performed By: Well Diameter: Purge Method: Bore Depth (start): Volume Removed: Bore Depth (start): Time Started: SWL (end): Discharge Rate: Bore Depth (end): NAPL Present: (If yes, thickness): Sampling Date: Performed By: Well Diameter: Well Diameter: Sampling Method: Sampling Method: Sampling Method: SwL (start): Sampling Depth: Time Started: SwL (start): SWL (end): SWL (end)	Visual confirmation with bailer: Y / N Rainfall past 24 hrs(mm):	Mainta	Comments .							(If yes, th	hickness):	
Equipment: Date :	Performed By : Well Diameter :	Midilita	inance required :						Visual con	firmation wi	ith bailer : Y	1
Date Performed By : Well Diameter :	Performed By : Well Diameter :											
Date Performed By Well Diameter	SWL (start) :		Lqupiiii						Rainfall p	bast 24 hrs(r	mm):	
Purge Method :	SWL (start) : Volume Removed : Bore Depth (start) : Bore Depth (end) : NAPL Present : Y / N (If yes, thickness) : Well Diameter : Sampling Depth : SWL (start) : SWL (start) : SWL (end) :	Purging / C	Development		Mark Control	NO COUNTY			6580m	是是是		300
Purge Method Time Started SWL (start) Volume Removed Bore Depth (start) Time Stopped SWL (end) Discharge Rate Bore Depth (end) NAPL Present (If yes, thickness)	SWL (start) :		Date :			Per	formed By:			Well Diam	eter:	
Time Stopped : SWL (end) : Discharge Rate : Bore Depth (end) : NAPL Present : (If yes, thickness) :	SWL (end) :		Purge Method :									
NAPL Present : (If yes, thickness) : Sampling Date :	NAPL Present: Y / N (If yes, thickness): Performed By: Well Diameter: Sampling Depth: SWL (start): SWL (end): SWL (end): Cted? Y / N Duplicate Sample ID: Cted? Y / N Duplicate Sample ID: Comments (colour, turbin odours, sheen etc) (C) (miV) (ppm) (mg/L) (m) Comments (colour, turbin odours, sheen etc)		Time Started :		SWL (start)	:	Volume	Removed:			_	
Sampling Date : Performed By : Well Diameter :	Performed By : Well Diameter :		Time Stopped:		_ SWL (end)	:	Discha	arge Rate :				
Date :	Performed By: Well Diameter: Sampling Depth: SWL (start): SWL (end): SWL (end): Cted? Y/N Duplicate Sample ID: Comments (colour, turbic odours, sheen etc) Redox Dissolved Oxygen SWL Comments (colour, turbic odours, sheen etc) Comments (colour, turbic odours, sheen etc)		Comments:									
Date :	Sampling Depth: SWL (start): SWL (end): SWL (end): SWL (end): Comments (colour, turb) (c) (miV) (ppm) (mg/L) (m) SWL Comments (colour, turb) Odours, sheen etc)									(If yes, t	hickness) :_	
Date :	Sampling Depth: SWL (start): SWL (end): SWL (end): SWL (end): Comments (colour, turb) odours, sheen etc) 8 6-54 (R-6-86-1-9(-1-4)-4-24-4-24-4-24-4-24-4-4-4-4-4-4-4-4-		antina	SHEET STORES	CHRISTATAYA (DKS	bhts:ms#V		901E(2)()()	美全人祖等 認	SELECTED SELECT	OBS AND SHE	NAME OF
Sampling Method: Time Started: Time Stopped: Time Stopped: Tubing Type: Comments: Duplicate Sample Collected? Y/N Duplicate Sample ID: Field Analyses Time Volume Removed (L) [uSlcm] pH (C) [miV] (ppm) [mg/L] (m) SY (L 898 6.54 (R.6 86.1 9(.1 % 4.26 6.55))	Sampling Depth: SWL (start): SWL (end): SWL (end): SWL (end): Comments (colour, turb) odours, sheen etc) 8 6-54 (R-6-86-1-9(-1-4)-4-24-4-24-4-24-4-24-4-4-4-4-4-4-4-4-	San			2.235.21	Po	dormed By:	THE REAL PROPERTY.		Well Diam	neter:	235040
Time Started : Sampling Depth : SWL (start) : SWL (start) : SWL (start) : SWL (start) : SWL (end) :	Sampling Depth: SWL (start): SWL (end): SWL (end): Cted? Y/N Duplicate Sample ID: Cted? Y/N Duplicate Sample ID: Cted? Y/N Duplicate Sample ID: Comments (colour, turbing adours, sheen etc) Comments (colour, turbing adours, sheen etc)		Date :			- Pe	normed by :			· · · · · · ·	_	
Time Stopped : SWL (start) : Tubing Type : SWL (end) : Comments : Duplicate Sample Collected? Y / N Duplicate Sample ID : Field Analyses Time Volume Removed (L) (uS/cm) PH (C) (miV) (npm) (mg/L) (m) codours (C) (miV) (npm) (mg/L) (m) Comments (mg/L) (m) codours	SWL (start): SWL (end): SWL (end): Duplicate Sample ID: Comments (colour, turbic adours, sheen etc) (C) (miV) (ppm) (mg/L) (m) Comments (colour, turbic adours, sheen etc)	58	Time Started					Samo	ling Death			
Tubing Type: Comments: Duplicate Sample Collected? Y/N Duplicate Sample ID: Field Analyzes Time Volume Removed (L) (uS/cm) PH (C) (miV) (ppm) (mg/L) (m) codours. SY (L 898 6.54 (9.6 86.1 9(.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54 (9.6 86.1 % 9.26 6.54	ONAPL Present: Y / (If yes, thickness): required: required: Date: Performed By: Well Diameter: e Method: e Started: SWL (start): Discharge Rate: Bore Depth (start): NAPL Present: Y / (If yes, thickness): Well Diameter: e Method: e Started: SWL (end): Discharge Rate: Well Diameter: (If yes, thickness): Date: Performed By: Well Diameter: SWL (end): SWL (start): SWL (end): Discharge Rate: Sampling Depth: Stopped: SWL (start): SWL (start): SWL (start): SWL (start): SWL (start): SWL (start): SWL (end):											
Comments: Duplicate Sample Collected? Y/N Duplicate Sample ID: Field Analyses Time Volume Removed (L) (uS/cm) pH (C) (miV) (ppm) (mg/L) (m) codours. SS (L 898 6.54 (R.6 86.1 9(.1 % 4.26 6.54))	Duplicate Sample ID: Duplicate Sample ID:											
Field Analyses EC	Temp Redox Dissolved Oxygen SWL Comments (colour, turb)											
Field Analyses	Temp Redox Dissolved Oxygen SWL Comments (colour, turb)		Faulament									
Time	m) pH (C) (mV) (ppm) (mg/L) (m) odours, sheen etc) (loss code)		Duplicate Sam									
Time Volume Removed (L) (US/em) PH Temp Redox Dissolved Oxygen SWL Comments (modeurs, modeurs, modeurs	m) pH (C) (mV) (ppm) (mg/L) (m) odours, sheen etc) (loss code)			DAY HAT PERSON THAT		S. P. S. S. S. S. S. S.	NAME OF A COMPANSION OF THE PERSON OF THE PE	AND THE PARTY OF	VERNING THE REST	SONOTARIA SIRIF	Contract of the last	THE REAL PROPERTY.
Time Removed (L) (us/cm) pH (C) (mV) (ppm) (mg/L) (m) odours, (m) SY (L 89.54 (9.686.7 91.1% 4.26 6.54 (9.686.7 91.1% 4.26 6.54 (9.686.7 91.1%)	m) pH (C) (mV) (ppm) (mg/L) (m) odours, sheen etc) (loss code)	Field A	inalyses	THE RESIDENCE IN CO.	四, 但中国发 等			A AND THE		Service Manager		32,522
SY 12 878 6.54 19.6 86.7 91.1 % 4.26 6.54	8 6.54 19.6 86.7 91.1% 4.26 dear water	Time		EC	pH	Temp	Redox	Dissolve	d Oxygen	SWL		
0.8	de so code		Removed (L)	(uS/cm)		(C)	(Ven)	(ppm)	(mg/L)	(m)	odours,	sheen e
0.8	Class wood	38	12	898	6.64	18.6	0/1	91.1	e/.	426	A	
		,	-		1	1	200.7		/*	1700	10.00	(x
												-0
												-ρ.
												_P
					-							
												- P
												-ρ.
												_p
					-							- P -
												-P
												- P -
ilisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%												P
												- P
												-P
												P.

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL No: BHO38 af JV

G	uging	10.40/	77011	La Cala	Dorto	rmed By:					
70	Date :	13/06 11:00a 12:38	1200		Penc	imed by .			neter:		
	Gauging Method :	11:000	M	B	ore Depth :	0.17	MICC	LNAPL	Present : Y	11	N
	Cian :	10 -280	NTOC.	Denth	to LNAPL :_				ickness):		
	Comments :	1230.	1.700						Present : Y	111	N
	Comments ,								nickness):		
Mainte	inance required :						Visual conf			11	N
WILL THE	Equipmnet							ast 24 hrs(r			
rging / I	Development		1000			of the same	1,0,,,,,,				
	Date :			Perf	formed By :			Well Diam	eter:		
	Purge Method:										
	Time Started:		SWL (start):		Volume F	Removed :		Bore De	pth (start):		
	Time Stopped:		SWL (end):		Discha	rge Rate :		Bore De	epth (end):		
								NAP	L Present:	Y /	N
								(If yes, t	hickness):		
San	pling				-					-	
Jan				Per	formed By:			Well Diam	neter :		
Sa	impling Method :				-,-			2.01			
	Time Started :						ling Depth :				
	Time Stopped:						WL (start):				
	Tubing Type :					5	SWL (end):				
	Comments :										
	Duplicate Sam	-1- 0-11	*****								
	Duplicate Sam	ple Collected?	Y/N		Duplicate S	ample ID :				_	_
Field A	nalyses										
ime	Volume	EC		Temp	Redox	Dissolve	d Oxygen	SWL	Comments (c	olour tu	ubld
ime	Removed (L)	(uS/cm)	pH	(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen et	ic)
30	m	612	7.7-1	10-0	000	and the state of			THE PERSON NAMED IN	000000	
20		612	7.77	1709	99-1		61		ue	24	_
			7.7		7		_		100	1	•
									Les	Y-	$\underline{\mathcal{L}}$
								V	2 -	1	_
									000		6
											_
										_	_
											_
										_	_
										_	
											_
											_
											_
						ii -					
ation Cr	teria	+/- 3%	+/- 0.05		+/- 10mV	+/-	10%				-
Volume	Calculations										
Diamete	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN								300mm		
rsion Fa	ector		$\overline{}$						196.3	_	
		25mm	50mm)	100mm	125mm	150mm			1	\dashv	
		0.98	1.96	7.85	31.4	49.1	70.7	125.7		_	
MELL	DEDTU/ \\	ATER LEVE	I - NIMATED	COLLINA							
WELL	DEPTH(-)W			· 7 T							
	— ^{m (-)} ¬	2-35	(=)								
010											
12	•	WATER COL	IMN (Y)CC	NVFRSIO	N FACTOR	(=) I ITE	RES PER	VELL VOL	UME		

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL NO: SHU BHOS 1- STU

	Date:	12/08/	2021	1	Perfo	rmed By:					
Gaur	ging Method :_	12						Well			
Out	Time:			Bor	e Depth :_						1
	SWL:	- 4 -		Depth to	LNAPL :_			_(If yes, th	nickness):		
									Present :		1
	00 - 00								nickness):		
Maintainar	nce required :_						isual confi	rmation wi	th bailer :	Y /	1
	Equipmnet:						Rainfall pa	st 24 hrs(r	nm):		
ourging / Dev		allo one	a evel.	彩譜 級					Se PE	40	Z)
	Date:			Perfo	rmed By:_			Well Diam	eter:		
					Volume I	Removed:		Bore De	pth (start) :		
Ti			SWL (end) : _		Discha	arge Rate :			epth (end) :		
	Comments:								L Present :		-
								(If yes, t	hickness) :		_
Sampli				水建制建			12,100		计规则		řž
	Date:			Perfo	ormed By:_			Well Diam	neter:		
	oling Method :										
	Time Started :						ng Depth :				
Ti	me Stopped:						VL (start) :_				
	Tubing Type:					S	WL (end) :_				
	Comments :								_	_	_
t	Duplicate Sam	ple Collected?	Y/N		Duplicate S	Sample ID :					
Field Ana	lyses			NEW YORK OF THE PARTY OF THE PA	China Con	DE DE SENSE	28/28/62/20	angene et en c	SESCUENCE	2000	The same
		EC	THE SECTION OF THE PARTY OF	Temp	Redox	Dissolved	Course of the last	CUE			100
Time	Volume Removed (L)	1,000	pH	Temp	REGUX	Dissolved	Oxygen	SWL	Comments (
	Removed (L)	(uStem)	20.81	(c)	(mV)	(ppm)	(mg/L)	(m)	odours	sheen	etc
A 7			~				01		_		_
1/10		(C) A	VI-K	-			714	TTP	tt		
	47)	2 4		1	12						
	$\overline{\nu}$	7) (3	1						
	7						,				
											_
										_	_
										_	_
					-						_
									-	_	
											-
ilisation Criter	ia	+/- 3%	+/- 0.05		+/- 10m\	/ +/	- 10%	1 2 2 3 4			
ell Volume C	alculations	+/- 3%	+/- 0.05		+/- 10m\	/ +/	-10%	100000	300mm		1
ell Volume Ca	alculations	-		400000				250mm	196.3		
ell Volume C	alculations	25mm	50mm	100mm	125mm	n 150mr	n 200mr		196.3 m		
ell Volume C	alculations	-		100mm 7.85		n 150mr		n 250mm 125.	196.3 m		
ell Volume Conn Diameter version Fact	alculations	25mm	50mm 1.96	7.85	125mm	n 150mr	n 200mr		196.3 m		1

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL No: BH 044 waf JV

	Date:	13 68	124		Perfor	med By:				
Ga	uging Method :						_		meter:	
	Time:	9:11							Present : Y	1 N
	SWL:	15.7 A		Depth to	o LNAPL :		_			
	Comments :_								Present : Y	/ N
Maintain	ance consider :						Visual conf			/ N
Mamama		The State						ast 24 hrs(n		3 30
Purging / Dev	velopment	F 8 (2) (5)		N 1000						1000
	Date:			Perfo	ormed By:_			Well Diame	eter;	
,	Purge Method :		CIAII (start)		Volume R	emoved :		Bore Dec	oth (start) :	
т	ime Stopped :		SWL (end) :		Discha	rge Rate :			pth (end) :	
	Comments :							NAPI	L Present : Y	
								(If yes, th	hickness):_	
Sampl										
Com	Date:	-		Perf	formed By:_			Well Diam	eter: _	
Sam	Time Started					Samo	ing Depth :			
т	ime Stopped :									
	Tubing Type :				į.	,	WL (end):			
	Comments :									
	Duplicate Sam	ple Collected?	Y/N		Duplicate S	ample ID :				
Field Ana	lyses			Sales I		4,500	EN DI	Alexander.	15(E)(9)(S)	
Time	Volume	EC	pH	Temp	Redox	Dissolve	d Oxygen	SWL	Comments (co	
12.0-	Removed (L)	(uStem)		(c)	(mV)	(ppm)	(mg/L)	(m)	-	sheen etc)
IF ATT	7-	812	7.45	18.5	92.9	63.9	7-	10		NTU
			1					1	(On 0	
-						_		1	Bozny	_
								-	_	
										y.
					_					
			9.5							
			1 1						-	
lication City	oria .	4/- 30/-	+/-0.05	-brace	+/-10m)		1.10%			- 110-00
ilisation Crite	eria	+/- 3%	+/- 0.05	- cidate	+/- 10mV	Attent	<i>I</i> - 10%	20 82.684.0		-2.135403
		+/- 3%	+/- 0.05	- chaes	+/- 10mV	/ Attach	<i>l</i> - 10%			2//200
ell Volume (Calculations	+/- 3%	+/- 0.05	e trans	+/- 10mV	/ 12.25 to 4	<i>l-</i> 10%		300ma	27.5000
	Calculations	+/- 3%	+/- 0.05	- cwar	+/- 10mV	/ 15 miles +	<i>l-</i> 10%		300mm	
ell Volume (Calculations	25mm	50mm	100mn	n 125mm			nm 250m	196.3	
ell Volume (Calculations			100mn 7.85			m 200m		196.3	
ell Volume (og Diameter version Fac	Calculations Stor	25mm	50mm 1.96	7.85	n 125mm 31.4	150m	m 200m		196.3	
ell Volume (og Diameter version Fac	Calculations Stor	25mm 0.98	50mm 1.96	7.85	n 125mm 31.4	150m	m 200m		196.3	
on Diameter version Fac	Calculations ttor	25mm 0.98 VATER LEVEL	50mm 1.96 L (=) WATE	7.85	n 125mm 31.4	150m 49.1	m 200m	7 125.	196.3 .7	
ell Volume (og Diameter version Fac	Calculations ttor	25mm 0.98 VATER LEVEL	50mm 1.96	7.85	n 125mm 31.4	150m 49.1	m 200m	7 125.	196.3 .7	

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL No: BHOTOd . af JV

	Date :_	13/02/	20761		Perfor				
Gaugi	on Mathed:		200			-	3 A -	VVeil L	Present: Y / N
	Time '	11:300	un Tal	Bor					
	SWL E	25.57~	4 100	•Depth to	LNAPL:				ickness) :
(Comments :_					_		<u> </u>	Present: Y / N
	-								ickness) :
						v	isual confi	rmation wi	th bailer : Y / N
	Equipmnet: _						Rainfall pa	ast 24 hrs(n	nm):
rging / Devel	opment		The State of	MARRIAN	3 1 1 3	Steel Steel	and the	可能是可见	AS REAL
	Date:			Perfo	med By:_			Well Diam	eter:
	ge Method : _								Western Los
Tir	me Started :		SWL (start) :_		Volume R	emoved :_		Bore De	oth (start) :
			SWL (end) :_		Discha	rge Rate :		Bore De	pth (end) :
,	Comments : _								L Present : Y / N
								(ii yes, t	hickness) :
Sampling		CELET WE	Marian			AND	5000	To A Section	100 100 110
	Date:			Perfo	ormed By:_			Well Diam	eter:
Sampli	ng Method:			P-1					
Tir	me Started :	ess further					ng Depth :		
Tim	ubine Tree					SV	VL (start) :		
11	Comments:					S	WL (end) :		
	Comments:	A Property							
Du	Equipment iplicate Sam	ple Collected?	Y/N		Duplicate S	ample ID :			
Field Analy				C/AMERICA DO					THE PERSON NAMED IN COLUMN
Field Attenty		EC	THE REAL PROPERTY.	Temp	Redox	Dissalved	Dogen	SWL	
Time	Volume Removed (L)	100001	pH						Comments (colour, turbit odours, sheen etc)
		(uSicm)		(C)	(mV)	(ppm)	(mg/L)	(m)	occurs, sinceri etc)
									/
						F-1			
				_	AN	90	-	,	
				A	WW	we	til e	toat	PH 170
DU	1 0	s PW	W) /) I	/0~			-	~~ ~~	10
DX	y a	oell,	not	12	11			-	
DX	40	·ew,	not	12				1	10
D>0	10	seM ,	not	/~	1		w	unt	le.
D>0	10	> eM ,	not	7&	1		w	unt	le.
D X	1	·ew,	not	/&	1		w	ant	le.
Dx.)	not	7&	4		w	ant	le ·
D>0		>eM,	NOT	7&	1		W.	amp	le ·
D 30		>eM,	NOT	7&	1		W	unt	le ·
D 30		>eM,	NOT	7&	4		W.	unt	le ·
() X		>eM,	NOT		4			unt	le ·
D XC	9 0	>eM,	NOT		4		W.	amp	le ·
D > 0		>eM,	NOT		4			ant	le.
D > 0		>eM,	NOT		4			ant	le ·
() X		>eM,	NOT		4			ant	le.
		>eM,	NOT		4			ant	le.
sation Criteria		+/- 3%	+/-0.05		+/- 10mV	+1		ant	le.
sation Criteria		+/- 3%			+/- 10mV	+1	-10%	ant	de.
Volume Ca		+/- 3%			+/- 10mV	+1		unt	de.
Volume Ca	culations	+/- 3%			+/- 10mV	+1		unt	300mm
Volume Ca	culations		+/- 0.05		11.		-10%	m 250m	196.3
Volume Ca	culations	+/- 3%	+/- 0.05	100mm	125mm	150mm	-10%		196.3 m
Volume Ca	culations	25mm	+/- 0.05		11.		-10%		196.3 m
Volume Ca Diameter ersion Facto	iculations	25mm	+/- 0.05 50mm 1.96	100mm 7.85	125mm 31.4	150mm	-10%		196.3 m

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL NO: BYOTOS

	C	11
2	т.	1\/
CII.	II (ノV

	MERILEN.	STATE OF THE	ATTICK TO		W.P.	amed Door				
Gaun	Date : ing Method :_	3/08/	2024		Perfo	ormed By:		Well	Diameter ;	
Gaug	Time:	11: 300	m		ore Depth :_			LNAP	L Present : Y	N
		1.2 mT	0C.	Depth	to LNAPL :_				hickness):	
	Comments :_								L Present : Y / hickness) :	N
Maintainan	ce required :_					\	/isual confi		ith bailer : Y	N
	Equipmnet: _						Rainfall pa	ast 24 hrs(r	mm):	
urging / Deve	opment			2000	3000			1000	de la companya dela companya dela companya dela companya de la com	GENE
	Date:			Perf	ormed By:			Well Diam	neter:	
Pur	ge Method :				Volume	Removed : _		Bore De	pth (start) :	
Tim	ne Stopped :		SWL (start) :		Discha	rge Rate :			epth (end) :	
	Comments :								L Present : Y	
								(If yes, t	hickness):	_
Samplin				200	SERVE ST	THE STATE OF		PMA		9,42
·	Date : _			Per	formed By:			Well Diam	neter:	
Sampli	ng Method : _ ne Started :					Samoli	ng Depth :			
****	e Stopped						CONTRACTOR OF THE PROPERTY OF			
Ti	ubing Type : _ Comments :					s	WL (end):			
Du	plicate Samp	le Collected?	YIN		Duplicate S	ample ID :				
Field Analy	5e3	F C 21 F	Charles and Control	Carlo Periodo Carlo	Tolis State Company	TO STREET WHEN		Name of the local division in the local divi	6(S)) F (1)	Control of the last
	Volume	EC	and the state of t	Temp	Redox	Dissolved	THE REAL PROPERTY.	SWL		
Time	Removed (L)	(uS/cm)	pH	(C)	(mV)	(ppm)	(mg/L)	(m)	Comments (colour odours, shee	
				,-,		GPI	()	4.0	1 40	_
							\neg			
	\rightarrow									
	=						=		1.0	
				n b	a	+	o ta			ماء
) oug	well	nol	- A	uff	ciè	ŧώ	ate	1 to	san	de
ou .	well	,no	~ A	uff	ciè	ŧΰ	ate	1 to	san	de
oy.	للهدي	,nol	< A	rff	cie	ŧú	ote	1 to	san	de
)oug	للهدي	,nol		uff	ciè	t w	ote	t to	san	de
oy ,	للەس	,no	< 1 A	uff.	cie	t w	ate	t ta	san	de
ouy.	coell	,nol	~ /A	uff	ciè	t w	ote	(to	sam	de
)oug		,nol	~ /A	uff	cie	t w	ote	t to	san	de la
)our		,no		uff.	cie	t a	ate	1 to	sau	rp
ou (,00	< /a>	riffi —	ciè	t w	ate	t to	sau	rle)
ouy ,		,00	~ /A	riff.	cie	t w	ote	1 10	sam	de
)our		,00	~ /A	uff.	cie	t w	ote	t to	sam	rp
)oug		,00	< 1/2		cie	tu	ate	t to	sau	rp
isation Criteria		+/- 3%	+/- 0.05		+/- 10mV		10%	(to	sau	rp
isation Criteria	6							1 10		de
disation Criteria	culations	+/- 3%	+/~ 0.05		+/- 10mV	+/-	10%		300mm 196.3	de
isation Criteria	culations			100mm 7.85				250mm 125.7	300mm 196.3	nfe

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL No: BH_009-safJV

Project No :	CTEAR	= 5 V -	Proj	ect Name :				•	
Gaug			S25555	NEW OIL			15 A		11000
		13/8/	24		Perfo	rmed By:			
Ga	HOIDS METROS:					_	_		Diameter:
		12:21			ore Depth:_			TO VALED TO SERVE	PL Present: Y / N
		4.26	~	Depth	to LNAPL:_				thickness): PL Present: Y / N
	Comments :							75.00	thickness):
Maintain	ance required :						Visual con		with bailer : Y / N
								ast 24 hrs	
Purging / De									活起使用
	Date:			Perf	ormed By:_			Well Dia	meter:
	Purge Method :		C110 (
,	Time Staned :		_ SWL (start) :		Volume F	Removed :		Bore D	epth (start) : Depth (end) :
	Comments:		_ SVVL (end) :		Discha	ilge Kale .			PL Present: Y / N
	oommens.								thickness):
Samp	The second second				THE RESERVE AND PARTY.	1000			En la la Maria
C	Date:	13/08	124	Perf	ormed By : _			Well Dia	meter:
San	npling Method : Time Started :					0	Eas Death :		
7	Time Stopped:						ling Depth: WL (start):		
							SWL (end)		
	Comments:						J. 1. C. (a)		
	Fauinment:								
	Duplicate Sam	ple Collected?	Y/N		Duplicate S	Sample ID :			
Field An	alyses	Service Service				103	全部 基础		
Time	Volume Removed (L)	EC	pH	Temp	Redox	Dissolve	d Oxygen	SWL	Comments (colour, turbic
	removed (c)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	- odours, sheen etc)
:27	21	1363	6-35	20.2	1245	61.	B %		ME NTV
				34					msld
									tinlid
			-	-					uda.
			-	-			_	_	
				_	_	-	-	-	
								-	
							41.0	1	
							-		
		"7"							
							-		
		- 1			_				
		3	+	-	_		-	-	
		1		_			1		
7	1 6 8	F 1							
	0	2							
lisation Crite	eria 24 Mar	+/-3%	+/- 0.05	11283	+/- 10mV	+/	-10%	TAUTE	March 1970
II Volume (Calculations	1							
n Diameter									300mm
version Fac	tor	25mm	50mm	100mm	125mm	150mm	200mm	1 250m	196.3
		0.98	1.96	7.85	31.4	49.1	70.7	125.	
AL WELL [DEPTH(-)W m(-)_	ATER LEVEL	(=) WATER	COLUMN					
		WATER COL	UMN (X)C	ONVERSIO	N FACTOR	(=)		L	LUME
		0.79	1,	V96	,		1.45	04	

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

Gauging	13/08	24		Perf	ormed By			
Gauging Method	191001						Well	Diameter :
Time:	12:35		Bo	re Depth :_			LNAP	LPresent: Y /
SWL	30.44	m	Depth t	DUMPL:			(If yes. I	hickness):
Comments								L Present: Y /
							1711	nickness):
faintainance required						Visual conf	irmation w	ith bailer: Y /
Equipmet						Rainfall p	ast 24 hrst	mm);
ng / Development			1945					
Date :			Perf	ormed By :			Well Diam	neter:
Purge Method :								
Time Started		SWL (start)		Volume	Removed :			pth (start) :
Time Stopped :		SWL (end):		Dach	arge Rate :			epth (end) :
Comments :								L Present: Y /
							(F yes.	hickness):
Sampling	Keres S							
Date :			Perf	ormed By :			Well Dan	neter ;
Sampling Method :								
Time Started : Time Stopped						ling Depth :		
Tubing Type:						WL (start):		
Comments:					;	SWL (end):		
Duplicate San	nple Collected?	Y/N		Duplicate S	Sample ID			
eld Analyses								
THE RESERVE TO SECURE	EC	Name and Address of the Owner, where the Owner, which is the Owner	Temp	Roder	- Country	d Oxygen	Set.	
Volume	The state of the s							Comments Inches
Removed (L)		pr		1000				Comments (colour, edours, sheen
Famoved (L)	(ution)	pr	R	(min)	(point)	(mgt.)	[0]	
			R	(min)	(mm)	(mgL)	(m)	edours, sheen
	(Kes)		R	1000		(mgL)		
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um			R	re .	te	(mgL)	# der	edours, sheen
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	ckest	ن لا بال	ol.	re .	te	belo	# der	Planty
H um	Turk	i Q.L.	ol.	le dott-	to	ble To	# der	Planty
H um	ckest	ن لا بال	ol.	re .	to	belo	# der	Planty
erny o	Turk	i Q.L.	ol.	Le dott-	to	ble To	# der	Planty
en Creese	Turk	i Q.L.	ol.	Le dott-	to	ble To	# der	Planty oll .
on Cruesa	Turk	i Q.L.	ol.	Le dott-	to	ble To	# der	planty old
en Creese	Turk	i Q.L.	ol.	(=1)	to to	6 TO	John Cu	300mm 196.3
on Cruesa	The k	i Q.d. J ++0.05	100	(=1)	to to	10%	John Cu	300mm 196.3
on Cruesa	11-3%	: Q.J	100mm	(=1)	To	6 TO	tu 250mm	300mm 196.3

WELL DEVELOPMENT, GAUGING AND SAMPLING DATA SHEET

WELL No: B40315

	C	1\ /
2	T.	1\/
		<i>y</i>

		13/0	8/2014		Perfo	med By:					-
(Gauging Method				Death :	2 7 4	100	5 I N/A	heter		- N
	Time	111 00	TOC	Denth	ore Depth :	(·41)	CIOC	(If yes	thickness)	. 1 /	"
	Comments				10 2100 21_				PL Present		N
	Comments							(If yes,	thickness)	:	
ainta	inance required						Visual conf	irmation	with bailer	: Y /	N
	Equipmnet						Rainfall p	ast 24 hrs	(mm):		
g / C	Development										
	Date :			Per	formed By:			Well Dia	meter:	_	
	Purge Method :		CIAN (etad)		Volume E	lemoued:		Bore D	epth (start)		_
	Time Stopped :		SWL (end) :		Discha	rge Rate:		Bore 0	Depth (end)		
	Comments:					100			PL Present		N
								(If yes,	thickness)	:	_
Sam	pling										
	Date :				formed By:			Well Dia	meter:		
Sa	mpling Method : Time Started :					Samuel	inn Daart				_
	Time Stopped :						ing Depth : WL (start) :				- 1
	Tubing Type :				8		WL (end) :				
	Comments:										
	Equipment:	ple Collected?	Y/N	1	Duplicate S	ample ID :					
			112232374		bupiloste 0	ampie io .					
0 A	Volume	EC		Temp	Redax	Dissolved	Oxygen	SWL			
	Removed (L)	(uS/em)	PH	(C)	(mV)	(ppm)	(mg/L)	(m)	Comments	s (colour,	
			C 22			O-Pint	friday	100			200
		2161	2.23		42.4		10		1	_	\dashv
		'			, ,		60.	D ·			
				18.0				•			
_				-							
_	_		-								
_			 						-		
					\vdash				+	_	
								_	_		
			_								
Cni	leria	+/- 3%	+/- 0.05		+/- 10mV	+/-	10%				
		+/- 3%	+/- 0.05		+/- 10mV	+/-	10%				
ıme	Calculations	+/- 3%	+/- 0.05		+/- 10mV	+/-	10%				
ime nete	Calculations	+/- 3%	+/- 0.05		+/- 10mV	+/-	10%		300m		
nete	Calculations	+/- 3% 25mm	+/- 0.05	100mm	+/- 10mV	+/-	10%	250mr	196.		
me	Calculations			100mm 7.85				250mr 125.7	196.		
me nete Fa	Colculations	25mm 0.98	50mm 1,96	7.85	125mm	150mm	200mm		196.		
me ete Fa	Calculations	25mm 0.98	50mm 1.96	7.85 COLUMN	125mm	150mm	200mm		196.		
me nete Fa	Colculations	25mm 0.98 ATER LEVEL	50mm 1.96	7.85 COLUMN	125mm	150mm	200mm		196.		
me Ea	Calculations coor	25mm 0.98 ATER LEVEL	50mm 1.96 (=) WATER (=)	7.85 COLUMN	125mm 31.4	150mm 49.1	200mm 70.7	125.7	196.		

WELL DEVELOPMENT, GAUGING AND **SAMPLING DATA SHEET**

WELL No: BMO38d afJV

Bore Depth SON Commerts C			13/08	12021	4	Perfor	med By:_			
SW	Ga					ore Death . Y	0.0	hma	1 (1)	
(if yes, hickness) :		SWI:	2047	MIM	Centh	to I NAPI	0 8	J L	(If yes 1	hickness):
(if yes, hickness) :			0 10	1.1.10	- Gepui	OLIVAPE			DNAP	L Present : Y / N
Equipment Rainfall past 24 hrs(mm):									7700	AND DESCRIPTION OF THE PARTY OF
Date Performed By Well Diameter	laintain	ance required :_						/isual confi	rmation w	ith bailer: Y / N
Date :		Equipmnet:						Calafall a		lecent.
Date : Performed By : Well Diameter :	on / De	About Schoolsofted &					ol -	Kainrali pa	15t 24 nrs(mm):
Purge Method : Time Standed : SWL (start) : Volume Removed : Bore Depth (start) : Bore Depth (start) : Bore Depth (end) : Bore Depth (end) : Bore Depth (end) : NAPL Present : Y / N (tryes, thickness) :	Ng / LA				Per	formed By :			Well Dian	neter :
Time Started SVV. (start) Volume Removed Bore Depth (and) Bore Depth (end) Removed SVV. (start) Bore Depth (end) NAPL Present Y N (if yes, thickness) NAPL Present Y NAPL Present Y N (if yes, thickness) NAPL Present Y N (if yes, thickness) NAPL Present Y N (if yes, thickness) NAPL Present NAPL Present Y N (if yes, thickness) NAPL Present NAPL Present NAPL Present NAPL Present NAPL Present						onned by .			VVCII DIGI	noter.
SWAL (end) : Discharge Rate : Bore Deoph (each) : Y / N (if yes, thickness) : NAP, Present : Y / N (if yes, thickness) : Well Diameter : Sampling Method : Sampling Method : Sampling Depth : SWAL (start) :		Time Started :		SWL (start):		Volume F	emoved :		Bore De	epth (start):
Comments Comments		Time Stopped:		SWL (end):		Discha	rge Rate :		Bore D	
Date :		Comments:								
Date Performed By Well Diameter									(If yes,	thickness):
Sampling Nethod Time Started Sampling Depth SWL (start) SWL (start) SWL (start) SWL (end) SWL (end	Samp	ling	757			- Free La				CONTRACT OF STREET
Sampling Nethod Time Started Sampling Depth SWL (start) SWL (start) SWL (start) SWL (end) SWL (end					Per	formed By :			Well Dia	meter:
Time Stopped: Time Stopped: SWL (start): SWL (end): Comments: Dipocific Sample Collected? V/ N Duplicate Sample ID: Sid Analyzes Volume Removed (L) (uslicin) PH Temp Redax Dissolved Oxygen (mgL) (m) (pm) (mgL) (m) Comments (colour, buthday addown, when its) (C) (m/y) (ppm) (mgL) (m) Comments (colour, buthday addown, when its) If U	San	npling Method:								
Time Stopped SVV. (start) SVV. (comments Comments Co		Time Started:								
Comments :		Time Stopped:					S	WL (start):		
Duplicate Sample ID : Duplicate Sample ID :							S	VVL (end) :		
Comments (colour, sheen etc) Comments (colour, sheen etc)		Comments.								
Comments (colour, sheen etc) Comments (colour, sheen etc)		Duplicate San	ple Collected?	Y/N		Duplicate S	ample ID :			
Volume Removed (L) (uSicm) PH Temp Redox (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (C) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (D) (mV) (ppm) (mgL) (m) Comments (colour, scheen etc) (ELL DEPTH (-) WATER LEVEL (=) WATER COLUMN (=) (1.54.2)										
Removed(t) (uSicm) (in) (in)	eld Ar	nalyses	Marie Company of the last	OMEN CALABORA	The second	-	-	THE PERSON NAMED IN		
Coloria			EC	рН	Temp	Redax	Dissolve	d Oxygen	SWL	
Criteria	20	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours, sheen etc)
Criteria						111.0				
Criteria	_		19 166	11.	1	1199		60-7		
Criteria			1410	6.14	19.1			00 Z		
Criteria					11-1					
Criteria										
Criteria										
Criteria										
Criteria		-			-					
Criteria	_							-	1	
Criteria	_				-	_	-	-	1	
Criteria		 	des.		_			-		
Criteria						+-		1		
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m										
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m										
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m										
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m										
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m										
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m						1		-	1	
100mm 125mm 150mm 250mm 196.3 196.3 100mm 125mm 150mm 250mm 196.3 100mm 125mm 150mm 125mm 125mm 150mm 125mm 125m	on Car	oria	+7 00/	27.005		+/- 10ml		L- 1094		PARTIE DE LA CONTRACTION DEL CONTRACTION DE LA C
300mm 196.3 100mm 125mm 150mm 250mm 196.3 196.3 1.96 7.85 31.4 49.1 70.7 125.7	on Chi	CIId	77- 3%	17-0.03		TO TOTAL		1070		A STATE OF THE PARTY OF THE PAR
300mm 196.3 100mm 125mm 150mm 250mm 196.3 196.3 1.96 7.85 31.4 49.1 70.7 125.7	lume	Calculations								
25mm				_						300mm
/ELL DEPTH(-) WATER LEVEL (=) WATER COLUMN	on Fa	ctor				1		1		196.3
VELL DEPTH(-) WATER LEVEL (=) WATER COLUMN				1	-					
$\frac{1}{2} = \frac{m(-)}{26.42} = \frac{15.43}{15.43}$			0.98	1.96	7.85	31.4	49.1	70.7	128	0.1
$\frac{1}{2} = \frac{m(-)}{26.42} = \frac{15.43}{15.43}$		DEDTU	VATERIEVE	(=) WATE	R COLUM	N				
	VELL		AVIEW FEAGE							
WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME	VELL			\ /	700	2				
		/¬	えらいつ	٠.	- 1/					

		100	9
-	#	- [\	/
	1	1	/

Project No				ject Name :						
Gaug	ging	TIP LED C	3 //					AND EAST		
	Date :_	10/09			Perf	ormed By:	-		7	
Ga	adding Michiga			-	DII-				Il Diameter :	/ NI
	Time :_	13.25	m TO		ore Depth :_ to LNAPL :_				PL Present : Y thickness) :	/ N
	Comments :	(/	.,,,,	Depin	IO LINAPL		-		PL Present : Y	/ N
	Comments							-	thickness):	, 14
Maintain	ance required :						Visual cor		with bailer : Y	/ N
	Equipmnet:						Rainfall	past 24 hrs	(mm):	10 1001
Purging / De	evelopment		W NEW	AVI ME	1 12 14		Train and	past 24 ms		
	Date :			Per	formed By:		-	Well Dia	meter:	
	Purge Method :									
	Time Started :					Removed:		Bore D	epth (start) :	
	Time Stopped :		SWL (end)		Discha	arge Rate:		Bore D	Depth (end):	
	Comments:								PL Present : Y	
								(If yes,	thickness):	
Samp	oling	VEHOUS.		Man e		7.50	PA 245		e de la compansión de l	
	Date :	10/8/2	- 4	Per	formed By :			Well Dia	meter:	
Sar	mpling Method :									
	Time Started :		12		6		ing Depth :			
	Time Stopped :			-	9)		WL (start):			
	Tubing Type :									
	Tubing Type : Comments :									
	Tubing Type : Comments :		Y/N		Duplicate S	S	SWL (end) :			
Field Ar	Tubing Type : Comments : Equipment: Duplicate Sam					S	SWL (end) :			
Field Ar	Tubing Type: Comments: Duplicate Sam		Y/N	Тетр		S	SWL (end):			r, turbīdity
	Tubing Type : Comments : Equipment: Duplicate Sam	ple Collected?		Temp	Duplicate S	Sample ID :	SWL (end) :	SWL		r, turbīdity n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected?	Y/N	Temp	Duplicate S	Sample ID : Dissolved (ppm)	SWL (end) :	SWL	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)
Field Ar	Tubing Type : Comments : Duplicate Sam	ple Collected? EC (u9/am)	Y/N pH	Temp (C)	Redox (mV)	Sample ID : Dissolved (ppm)	SWL (end) : I Oxygen (mg/L)	SWL (m)	Comments (colou odours, shee	n etc)

Well Volume Calculations								
Casing Diameter								300mm
Conversion Factor								196.3
	25mm	50mm	100mm	125mm	150mm	200mm	250mm	
	0.98	1.96	7.85	31.4	49.1	70.7	125.7	

TOTAL WELL DEPTH	1 (-) WATER LEVEL ((=)	WATER COLUMN
r	n (-)	(=)

SWL: YMTOC Depth to LNAPL: (If yes, thickness): Comments: DNAPL Present: Y / N (If yes, thickness): Maintainance required: Visual confirmation with bailer: Y / N Equipmnet: Rainfall past 24 hrs(mm): Purging / Development Date: Performed By: Well Diameter: Time Started: SWL (start): Volume Removed: Bore Depth (start): Time Stopped: SWL (end): Discharge Rate: Bore Depth (end): Comments: NAPL Present: Y / N (If yes, thickness): Sampling Date: Sampling Method: Bars Lee Sampling Method: Bars Lee Time Started: Sampling Depth: Time Stopped: SWL (start): Sampling Depth: Time Stopped: SWL (start): SWL (start): Tubing Type: SWL (end): Duplicate Sample ID: Field Analyses Volume EC Temp Redox Dissolved Oxygen SWL Comments (colour, turb)		jing								
Bore Depth LINAPL Freenit Y Y						Perf	ormed By			
SWL Graph SWL SW	Ga					oro Double			1 515 7	The state of the s
DNAPL Present: Y /			4900	NTOC	Depth	to LNAPI	10 10		LNAF	PL Present: Y / N thickness):
Maintainance required: Equipment Rainfall past 24 hrs(mm): Purging / Development Date: Purge Method: Time Stareted: SWL (starf): Comments: Sampling Date: SwML (end): Discharge Rate: Bore Depth (starf): NAPL Present: Y / / (ff yes, thickness): Sampling Method: Time Stareted: Sampling Method: Time Stopped: SWL (starf): SwML (end): Sampling Depth: SWWL (starf): SwWL (starf): SwWL (starf): SwWL (starf): Sampling Depth: SWWL (starf): SwWL (starf): Sampling Depth: SWWL (starf): SwWL (sta					вери	to Livii L			DNAF	PL Present : Y / N
Equipment: Date :										
Rainfall past 24 hrs(mm): Date	Maintain			-				_Visual cor	nfirmation v	vith bailer: Y / N
Date Performed By Well Diameter		Equipmnet:						Rainfall	past 24 hrs	(mm):
Purge Method: Time Started: SWL (start): Volume Removed: Bore Depth (start): Time Stopped: SWL (end): Discharge Rate: Bore Depth (end): NAPL Present: Y / 1 (If yes, thickness): Sampling Date: O P Performed By: AC Well Diameter: Sampling Method: Gar: LCC Time Stopped: SWL (start): Tubing Type: SWL (end): Comments: Dupilicate Sample Collected? Y (O Dupilicate Sample ID: Field Analyses Time Volume Removed (L) (uslien) PH Temp Redox (mV) (spm) (mgl.) (Purging / De									
Time Started: SWL (start): Volume Removed: Bore Depth (start): Time Stoped: SWL (end): Discharge Rate: Bore Depth (start): NAPL Present: Y / It (If yes, thickness): Sampling Date: O P Performed By: Well Diameter: Sampling Method: Sampling Depth: SWL (start): S		Date:			Per	formed By :			Well Diar	meter:
Time Stopped: SwL (end): Discharge Rate: Bore Depth (end): NAPL Present: Y / P (If yes, thickness): Sampling Date: Sampling Method: Sampling Method: Time Stopped: Time Stopped: Tubing Type: Comments: Duplicate Sample ID: Field Analyses Time Volume Removed (L) (usliom) Field Analyses Time Removed (L) SwL (end): Duplicate Sample ID: Field Analyses Time Field Analyses Time Note the stopped: Tamp Redox (inslow) Dissolved Oxygen (inslow) Comments (colour, turb odours, sheen stc)	,			SWI (start)		Volume F	Semoved :		Bore De	enth (start)
Sampling Date: OP Performed By: Well Diameter: Sampling Depth: Sampling Depth: SWL (start): Time Storped: SWL (start): Tubing Type: SWL (end): Comments: Duplicate Sample Collected? Y/W Duplicate Sample ID: Field Analyses Time Volume Removed (L) (LiStem) pH Temp Redox Dissolved Oxygen (mpil.) (m) (m										-
Sampling Method: Sampling Method: Sampling Method: Time Stapped: Time Stopped: Toubing Type: Comments: Duplicate Sample Collected? Y/N Duplicate Sample ID: Field Analyses Time Removed (L) UsSom) Toubing Type: Comments: Duplicate Sample ID: Field Analyses Time Removed (L) UsSom) Temp Redox Dissolved Oxygen SWL Comments (colour, turb odours, sheen sto) (C) (m) (m) (m) Temp Redox Dissolved Oxygen (mgil.) (m) (m) Temp Removed (L) (usSom) Temp Removed (L) (usSom) (m) Temp Removed (L) (usSom) (m) Temp Removed (L) (usSom) (m) Temp Removed (L) (usSom) (m) (m) Temp Removed (L) (usSom) (m) (m) (m) (m) (m) (m) (m) (m) (m) (Comments :							NAF	PL Present : Y / N
Date: 10 0 Performed By: AC Well Diameter: Sampling Method: Bat 1 CC Time Started: Sampling Depth: Time Stopped: SWL (start): Tubing Type: SWL (end): Comments: Duplicate Sample Collected? Y/A Duplicate Sample ID: Field Analyses Time Removed (L) (uStem) PH Temp Redox Dissolved Oxygen SWL Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto) (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen sto)									(If yes,	thickness) :
Sampling Method: Time Started: Time Stopped: Tubing Type: Comments: Duplicate Sample ID: Field Analyses Time Removed (L) (uStem) T	Samp	oling								
Time Storped: SWL (start): SWL			10/0	7	Per	formed By:	AC	_	Well Diar	meter:
Time Stopped: Tubing Type: Comments: Duplicate Sample ID: Field Analyses Time Volume Removed (L) (uslam) Field Analyses Time Redox (myl) (ppm) (mgil.) (m) Time Comments (colour, turb odours, sheen etc) Time Time Time Time Time Time Time Ti	San	32	BASL	ER			Same	ling Death		
Tubing Type: Comments: Dufficate Sample Collected? Y/W Duplicate Sample ID: Field Analyses Time Volume Removed (L) (UStem) pH (C) (mV) (ppm) (mgiL) (m) Comments (colour, turb odours, sheen etc) 1:02 22 1804 5.58 18.6 60.4 30.6 // 4.98 TunQ.d USTem) Comments (colour, turb odours, sheen etc)	2						2000 Marie 100 M			
Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Sample ID: Duplicate Samp										
Field Analyses Time Volume Removed (L) (US/am) PH Temp Redox (C) (mV) (ppm) (mg/L) (m) Comments (colour, turb odours, sheen etc) (1:02 22 1804 5.58 18.6 60.4 30.6 × 4.98 Teq0d colours)		Comments:								- 1
1:02 22 1804 5.58 18.6 60.4 30.6 × 4.88 Tunq.d c		Volume		рН	15 10 10 1					Comments (colour, turbic odours, sheen etc)
	1:02	Described at	A STATE OF THE PARTY OF THE PAR	5 (8		The second second		A Company of the last	A SHARWARD OF THE REAL PROPERTY.	
ilisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%	(XIII	5.70	11.0	60.		-		TACTO BE
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
lisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
ilisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
ilisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
ilisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
ilisation Criteria +/- 3% +/- 0.05 +/- 10mV +/- 10%										
installed official 17-10/10										
	lisation College		+/. 29/	+4.0.05		+/- 10m//		10%		
		eria	+/- 3%	+/- 0,05		+/- 10mV	4/-	10%		
Q Diameter 300mm Version Factor 196.3	ell Volume (Calculations	+/- 3%	+/- 0.05		+/- 10mV	+/-	10%		

Well Volume Calculations								
Casino Diameter								300mm
Conversion Factor								196.3
	25mm	50mm	100mm	125mm	150mm	200mm	250mm	
	0.98	1.96	7.85	31.4	49.1	70.7	125.7	

TOTAL WELL DEPTH (-) WATER	R LEVEL (=) WATER COLUMN	
m (-)	(=)	

WATER COLUMN	(X)	CONVERSION FACTOR (=)	LITRES F	PERI	WELL	VOLU	ME
	(X)	(=)		L		

WELL No: BM12-6 af 1/

SAMPLING DATA SHEET		
Project No : CH	Project Name :	

Gau	ging				S.Hirk	N. Wilson			The second
	Date :				Per	formed By:			
G	auging Method :	4						we	ıı Dıameter :
	Time :	1:41	m						PL Present : Y / N
	SWL:	4º15M	70C.	Depth	to LNAPL :			(If yes,	thickness):
	Comments:								PL Present : Y / N
					1			(If yes,	thickness):
Maintair	nance required :				4		Visual cor	firmation v	with bailer : Y / N
	Equipmnet:								
	.00.00						Rainfall	past 24 hrs	(mm):
Purging / D	evelopment								
	Date :			Per	formed By:			Well Dian	meter:
	Purge Method :								
	Time Started :		SWL (start)		Volume	Removed:			epth (start) :
	Time Stopped :		SWL (end)		Disch	narge Rate :		Bore D	epth (end) :
	Comments :							NAF	PL Present : Y / N
								(If yes,	thickness):
	50 / I								
Sam									
	Date :			Per	formed By:			Well Diar	meter:
Sai	mpling Method :								
	Time Started :						ling Depth :		
1	Time Stopped :				8	S	WL (start):		
	Tubing Type :						SWL (end):		
	Comments :								
	_ Equipment:	nple Collected?							
	Duplicate San	nple Collected?	Y/N		Duplicate	Sample ID :			
FINA	and the second								
Field A	nalyses				Name and Address of the Owner, where				
Time	Volume	EC	pH	Temp	Redox	Dissolve	d Oxygen	SWL	Comments (colour, turbidity
	Removed (L)	(uS/em)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours, sheen etc)
	4			000			0,		
		111110	70	2004	,				
		14100	118		-107.	2:01			
			. 70		101-	1400	1		
					2				
			_						
		-							
	-								
Stabilisation Crit	eria	+/- 3%	+/- 0.05	SHEET ST	+/- 10mV	+/-	10%	STATE OF	Total Control of the Control
O. SOM SANOTICS IN		11-376	7 0.00	Addition they	THE TURNY	HILLIAN TO	1070	Company of the last of	Maria Maria Maria Maria
Well Volume	Calculations								
Casing Diameter									300mm
Conversion Fa					***				196.3
		25mm	50mm	100mm	125mm	150mm	200mm	250mm	
		0.98	1.96	7.85	31.4	49.1	70.7	125.7	
				100					

TOTAL WELL DEPTH (-) WATER LEVEL (=) WATER COLUMN _____ m (-) _____ (=) ____

Duplicate Sample Collected? Y / N

WELL No: BY120, 21. 1/

oject No : CTP 1	Project Nar	me:		
Gauging				
Date : 10/	00	Performed By :		
Gauging Method :		,	nefter :	
Time: / (/ .	20 pm	Bore Depth :	LNAPL Present : Y /	1
SWL: 21 0	29m TOG	epth to LNAPL :		
Comments :		-	DNAPL Present : Y /	1
			(If yes, thickness):	
Maintainance required :		Visua	I confirmation with bailer: Y /	1
Equipmnet:				
		Rair	nfall past 24 hrs(mm):	
rging / Development			AND CARLES SAN	
Date :		Performed By :	Well Diameter:	
Purge Method :				
Time Started :	SWL (start) :	Volume Removed :	Bore Depth (start) :	
Time Stopped :	SWL (end):	Discharge Rate :	Bore Depth (end) :	
Comments :			NAPL Present : Y /	1
			(If yes, thickness):	_
Sampling				G
Date :		Performed By :	Well Diameter:	
Sampling Method :				
Time Started :		Sampling De	epth :	
Time Stopped :		SWL (st	art) :	
			nd):	

Field A	nalyses								
Time	Volume Removed (L)	EC (uStem)	рН	Temp (C)	Redox (mV)	Dissolved	Oxygen (mg/L)	SWL (m)	Comments (colour, turbidit odours, sheen etc)
				2100	9, .	/			01 0 11 015
1:300	las	17372	638	213	00 0	37.0)		no odeu
					23.0	21			no odeu
							-		
-				-					
							-		
bilisation Cri	teria	+/- 3%	+/- 0.05	Contract to the Contract of th	+/- 10mV	+/-1	0%		

Duplicate Sample ID :

Well Volume Calculations								
Casino Diameter								300mm
Conversion Factor								196.3
	25mm	50mm	100mm	125mm	150mm	200mm	250mm	- 4
	0.98	1.96	7.85	31.4	49.1	70.7	125.7	

TOTAL WELL DEPTH (-) WATER LEVEL (=) WATER COLUMN __m(-)___(=)____

	160
Project No:	Car

Project Name: 6 CS Rom Trung

-11-12										
Gau	ging	777	_	-						
	Date:		129		Perfo	ormed By:				
G	auging Method:	17		100					Diameter:	
	Time :_	8:53							PL Present : Y	/ N
		16.63	m	Depth	to LNAPL :_				thickness):	
	Comments :								PL Present : Y	1 1
							\ r1		thickness):	, ,
Maintair							Visual conf	irmation v	with baller : Y	/ N
	Equipmnet:						Rainfall p	ast 24 hrs	(mm):	
Purging / D	evelopment							MANUE		
	Date:			Perf	ormed By : _			Well Diar	meter:	
	Purge Method :					5		D D	anth (start) :	
	Time Started :		SWL (start):			Removed :			epth (start) :	_
	Time Stopped :		SVVL (end):		Discha	arge Rate :			Depth (end) : _ PL Present : Y	
	Comments:									
			396					(II yes,	thickness) :	
Sam	pling	1. 6.15				Λ.		W-II D:		
	Date:		7	Perf	formed By :	11(Well Dia	meter:	
Sa	mpling Method :		K			C	ing Doub			
	Time Started :					200000000000000000000000000000000000000	ing Depth:			
	Time Stopped :						WL (start) :			
	Tubing Type :		7			5	SWL (end):			
	Comments :									7
	p. Equipment:	ple Collected?	DUKS		Duplicate S	Sample ID :	DS	51		
	Duplicate San	iple Collected?								
Field A		iple Collected?		Makin						
	nalyses Volume	EC EC		Temp	Redox	Dissolved		SWL	Comments (col	
Field A	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)		odours, st	neen etc)
	nalyses Volume	EC			Redox	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	volume Removed (L)	EC (uS/cm)	рн 6.26	(C)	Redox (mV)	Dissolved (ppm) 2.0.	d Oxygen (mg/L) **Existing the second of th	SWL	odours, st	neen etc)
Time	Volume Removed (L.)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolved (ppm) 2.0.	i Oxygen (mg/L)	SWL	odours, st	neen etc)
Time	Volume Removed (L.)	EC (USIGN) 438,9	рн 6.26	(C)	Redox (mV)	Dissolved (ppm) 2.0.	d Oxygen (mg/L) **Existing the second of th	SWL	odours, st	neen etc)
Time	Volume Removed (L.)	EC (USIGN) 438,9	рн 6.26	(C)	Redox (mV)	Dissolved (ppm) 2.0.	d Oxygen (mg/L) **Existing the second of th	SWL	odours, st	neen etc)
Time	Volume Removed (L.) 2-1 iteria	EC [(US/cm)] 438 _9 +/-3%	рн 6.26	(C)	Redox (mV)	Dissolved (ppm) 2.0.	d Oxygen (mg/L) **Existing the second of th	SWL	odours, st (flan co system)	neen etc)
Time	Volume Removed (L.) 2-1 iteria Calculations	EC [(US/cm)] 438	PH 6 - 24	(6)	Redox (mV) - (TB +/- 10mV	Dissolved (ppm) 2.0.	d Oxygen (mg/L) 7 %	SWL (m)	300mm 196.3	neen etc)
bilisation Cr	Volume Removed (L.) 2-1 iteria Calculations	EC [(US/cm)] 438 _9 +/-3%	рн 6.26	(C)	Redox (mV)	Dissolved (ppm) 2.0.	d Oxygen (mg/L) **Existing the second of th	SWL	300mm 196.3	neen etc)

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME _____(X) _____(=) _____L

____(=)___

WELL No: BH715B afJV

Project No):									
Gau	ıging		AND SEA	Secretary and	73000					-
		12/11	124	į.	P	erformed By	/:_		-	-
G	auging Method Time		S			2 2			/ell Diameter :	
	SWI	23 8		Don	Bore Depth	-)+	-		APL Present : Y	N
			m	оер	IN IO LNAPL	· <u>·</u>			s, thickness) :	
	o o i i i i i i i i i i i i i i i i i i								APL Present : Y / s, thickness) :	N
Maintai	nance required	:					Visual c	(ii ye:	s, inickness) : with bailer : Y /	N
	Equipmne	i de la companya del companya de la companya del companya de la co								IN
Duraina / D	evelopment						Rainfa	ll past 24 hi	rs(mm):	
ruigilig / D	Date		-		orformed D		4	JA (SEE		
	Purge Method				erformed By			Well Di	ameter:	
			SWL (start)):	Volum	e Removed		Rore I	Depth (start) :	
	Time Stopped	:	SWL (end)):	Disc	harge Rate	:	Bore	Depth (start): Depth (end):	
	Comments					•			APL Present : Y /	N
									s, thickness) :	
Sam	pling		Maria Maria		Te to a second					
	Date		THE RESERVE AND ADDRESS OF THE PARTY OF THE	Pe	erformed By	:		Well Dis	ameter:	19 12 4
Sa	mpling Method					No.				
	Time Started				_	Sam	pling Depth	1		
	Time Stopped				_		SWL (start)			
	Tubing Type Comments				74		SWL (end)	:	7	
	p. Equipment:	nple Collected?	Y/N		Dunlinata	Cample ID				
	Dublicate San				Dublicate	Sample ID	1			
		inpie Collected?								
Field Ar	alyses									
Field Ar		EC (us/em)	рН	Temp	Redox (mV)		ed Oxygen (mg/L)	SWL (m)	Comments (colour, to	urbidity,
Time	volume	EC			Redox	Dissolve	ed Oxygen (mg/L)	SWL	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, to	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (uS/em)	рН	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time	Volume Removed (L)	EC (USICM) 2.1813	рн 6.44	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, le odours, sheen e	itc)
Time 289	Volume Removed (L)	EC (USICM) 2.1813	рн 6.44	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Camments (colour, to odours, sheen e	itc)
Time	Volume Removed (L)	EC (USICM) 2.18 13	pH 6.44	(C) 20.60	Redox (mV) AT.Q +/-10mV	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, to odours, sheen e	itc)
	Volume Removed (L)	EC (USICM) 2.1813	рн 6.44	(C) 20.60	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Camments (colour, to odours, sheen e	itc)

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
____(X) ______ (=) _____ L

_____m (-)_____ (=) ____

Project No :

WELL No: BHO46R af JV

Ga	uging	121							
13	Date	12/4/	2	1	Р	erformed B	y:		
(sauging Method								Vell Diameter :
	rime	15	6 pm		_Bore Depth	17	m	LN	IAPL Present: Y /
	Comments	13/11		Dep	oth to LNAPL	:			s, thickness) :
	Comments	•							APL Present : Y /
Mainta	inance required	:					Visual o	(If ye	s, thickness) : n with bailer : Y /
	Equipmnet	t:					visuai c	ommination	i with baller; Y /
							Rainfa	ll past 24 h	rs(mm):
Purging / D	Development								
	Date Purge Method			P	erformed By	:		Well Di	ameter:
	Time Started	:	SWL (start	١.	Malana	_		200000	
	Time Stopped		SWL (start	\ \:	Volum	e Removed	1:	_ Bore	Depth (start) :
	Comments		0772 (6110)	,	Disc	narge Rate	:		Depth (end) :
									APL Present: Y / s, thickness):
									, momedaj ,
Sam	pling								
Sa	: Date : mpling Method				erformed By			_ Well Dia	ameter:
	Time Started :					Sam	pling Depth		
	Time Stopped :								*
	rubing Type:				_		SWL (end)	:	
	Comments:								
	Duplicate San	ple Collected	7 Y/N		Duplicate	Sample ID	1		
Field A	nalyses			1	Para Carr				
		The second second second	The second second						
Time	Volume	EC	all	Temp	Redox	Dissolv	ed Oxygen	SWL	Comments (colour turb
_ loverye.	Removed (L)	(uS/cm)	рН	Temp (C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
			pH 6.78		0.51		(mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
_ loverye.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
_ loverye.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
_ loverye.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
_ loverye.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
allerere.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
alerore.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
_ loverye.	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 23 = ((mg/L)		Comments (colour, turb odours, sheen etc)
:58	Removed (L)	(uslem) 6749	6.48	(C)	(mV) 12-5	(ppm) 2-3 = ((mg/L)		Comments (colour, turb odours, sheen etc)
:58	Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 2-3 = ((mg/L)		Comments (colour, turb odours, sheen etc)
isation Crite	Removed (L)	(uslem) 6749	6.48	(C)	(mV) 12-5	(ppm) 2-3 = ((mg/L)		Comments (colour, turb odours, sheen etc)
isation Crite	Removed (L) 2 L	(uslem) 6749	6.48	(C)	(mV) 12-5	(ppm) 2-3 = ((mg/L)		Comments (colour, turb odours, sheen etc)
isation Crite	Removed (L) 2 L	(us/cm) 6749 +/-3%	6. FB +/- 0.05	(c) 20-3	(mV) 12_5 +/-10mV	(ppm) 2-3 = ((mg/L)	(m)	odours, sheen etc)
isation Crite	Removed (L) 2 L	(uslem) 6749	6.48	(C)	(mV) 12-5	(ppm) 2-3 = ((mg/L)		300mm

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
____(X) _____(=) _____L

Project No:	<u> </u>		_ Pi						
Gaug									
	Date	12/11	12024	,	Pe	rformed By	<i>i</i> :		-
Gar	-5 mg mound								ell Diameter :
	Time	1:36	PM		Bore Depth	26	m	LNA	APL Present : Y /
	SWL	21.8	mi	Dept	th to LNAPL			(If yes	s, thickness):
	Comments:							DNA	APL Present : Y /
								(If yes	s, thickness) :
Maintaina	ance required						Visual co	onfirmation	with bailer : Y /
	Equipmnet:								1000 21,200-121 0
S.M. Go. Alex		-					Rainfal	l past 24 hr	s(mm):
Purging / Dev									
	Date :			Pe	erformed By:			Well Dia	ameter:
	urge Method :								
	Time Started :		SWL (start)	:	Volume	Removed	:	Bore D	Depth (start) :
T	ime Stopped :		SWL (end)	:	Disch	narge Rate	::	Bore	Depth (end) :
	Comments:								APL Present : Y / I
								(If yes	, thickness) :
								-	*
Sampl		VALUE OF THE	SELVIE .	DE LA ROSTE					
	Date :			Pe	rformed By:			Well Dia	imeter:
Samp	pling Method:				- 20			-	
	Time Started:					Sam	pling Depth	:	
Т	ime Stopped:						SWL (start)	:	
_ =	Tubing Type:						SWL (end)	:	
	Comments:								
		ple Collected?				Sample ID	:		The second secon
	Equipment: Duplicate Sam					Sample ID	:		
	Equipment: Duplicate Sam	ple Collected?				Sample ID	:		
	Equipment: Duplicate Sam lyses		Y/N	Temp			ed Oxygen	SWL	Comments (colour, turb)
Field Ana	Equipment: Duplicate Sam lyses	ple Collected?			Duplicate \$				
Field Ana	Equipment: Duplicate Sam lyses	EC (uS/cm)	Y/N pH	Temp	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turbi
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	pple Collected?	Y/N	Temp (C)	Duplicate :	Dissolve	ed Oxygen	SWL	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turbi
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Equipment: Duplicate Sam lyses Valume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana Time	Ivses Volume Removed (L)	EC (uS/cm)	Y/N pH	Temp (C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L) 8 /-	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana Time	Ivses Volume Removed (L)	EC (US/cm)	Y/N pH 6.49	Temp (C)	Duplicate S Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana Time 4 Sour	Ivses Volume Removed (L)	EC (US/cm)	Y/N pH 6.49	Temp (C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L) 8 /-	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana Time Lipson Illisation Criteria Illisation Criteria Illisation Diameter	Iyses Volume Removed (L)	EC (US/cm)	Y/N pH 6.49	Temp (C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L) 8 /-	SWL (m)	Comments (colour, turble odours, sheen etc)
Field Ana	Iyses Volume Removed (L)	EC (us/em) 16277	Y/N pH 6.49	(C)	Redox (mV) (F. 3)	Dissolve (ppm) 29	(mg/L) 8 /-	SWL (m) 21.8	Comments (colour, turble odours, sheen etc) Very light turk of the colour turk of the co
Field Ana Time Lipson Juliantion Criteria Column Clameter	Iyses Volume Removed (L)	EC (US/cm)	Y/N pH 6.49	Temp (C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L) 8 /-	SWL (m)	Comments (colour, turble odours, sheen etc) Very light turk of the colour odours, sheen etc)

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______ (=) _____ L

_____ m (-)_____ (=) ___

WELL No: BH 126 af JV

Project No	·		-	roject Name	00				
Gau	ging								
	Date	12/1	1/24	1	Pe	erformed B	y:		Control Proposition Control Control
G		11:5	S' AH	(17)				V	/ell Diameter :
		- 16			Bore Depth	: 120	1 m	LN	APL Present: Y / N
	SWL	:4.3 m		Dep	th to LNAPL			(If ve	s, thickness) :
	Comments	:	15						APL Present : Y / N
									s, thickness) :
Maintair	nance required	:					Visual c	onfirmation	with bailer: Y / N
	Equipmnet								
Purging / De	evelopment			TO SHOW AND			Kainta	ll past 24 hi	rs(mm):
	Date			P	erformed By			Mall Di	
	Purge Method				shormed by			vveii Di	ameter :
		-	CIAII (stort)		11-1	5			2007001770170770V
	Time Stopped	:	_ SVVL (Start)		_ volume	Removed	·	Bore	Depth (start) :
	C	•	_ SVVL (end)	:	_ Discl	harge Rate):		Depth (end):
	Comments :								APL Present: Y / N
								(If yes	s, thickness) :
Samp	oling						200		An Anna Anna
	Date :			Pe	erformed By :			Well Dia	ameter:
San	npling Method :								MINION CAN ST. U.S.
	Time Started :				To the same of the	Sam	pling Depth	:	
	Time Stopped:								
	Tubing Type:				-		SWI (end)	;	
	Comments:						OTTE (Cita)		
	Duplicate San	nple Collected?	Y/N		Duplicate :	Sample ID	:		
Field An	The second second								
FIEIU AN	alyses				DET RESON	The same	2000	NO FEE	NOTE: THE PARTY OF
	Volume	EC		Temp	Redox	Dissolv	ed Oxygen	SWL	Comment of the last of the las
Time	Enthelia	EC (uS/cm)	рН	Temp (C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turbidity odours, sheen etc)
Time	Volume		pH1.8				(mg/L)	(m)	odours, sheen etc)
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)		Clear U Ta
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours, sheen etc)
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U Ta
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U May
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U May
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U May
Time	Volume Removed (L)	(us/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Clear U May
Time 2:00	Volume Removed (L)	(us/cm)	7.18	(C)	(mV) -64.4	(ppm) 3-1-3	(mg/L)	(m)	Clear U May
Time 2:00	Volume Removed (L)	(usicm)		(C)	(mV)	(ppm) 3-1-3	(mg/L)	(m)	Clear U May
Time	Volume Removed (L)	(usicm)	7.18	(C)	(mV) -64.4	(ppm) 3-1-3	(mg/L)	(m)	odours, sheen etc) (lies vith light trush Protter aggs smell.
lisation Criter	Volume Removed (L) 2 L	(usicm)	7.18	(C)	(mV) -64.4	(ppm) 3-1-3	(mg/L)	(m)	adours, sheen etc) Clear with light trush Protten aggs Amell.
Time 2:00	Volume Removed (L) 2 L	(usicm)	7.18	(C)	(mV) -64.4	(ppm) 3-1-3	(mg/L)	(m)	odours, sheen etc) (lies vith light tust Protter aggs smell.

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______(=) _____L

WELL No : 506

100000	1\ /
9	1\ /
	\mathcal{V}

Maintaina Purging / De	Date auging Method Time SWL Comments ance required Equipmnet	Mud	2 every	Dec	Rore Denth	. 20	~~	1.614	ell Diameter :
Maintaina Purging / De	auging Method Time SWL Comments ance required Equipmnet	10 . 4 4 . 4 mud	2 every	Dec	Rore Denth	. 20	~~	1.614	ell Diameter :
Maintaina Purging / De	auging Method Time SWL Comments ance required Equipmnet	10 . 4 4 . 4 mud	2 every	Dec	Rore Denth	. 20	~~	1.614	ell Diameter :
Purging / De	Comments ance required Equipmnet	mud	every	Det	_Bore Depth	20	200	1.614	
Purging / De	Comments ance required Equipmnet	mud	every	Det	th to I NAPI			LIV	APL Present : Y /
Purging / De	ance required Equipmnet	·mua	every	- agre	WITTO LIVIE L			(If you	thicknoon!
Purging / De	ance required Equipmnet	:		The state of the state of				DNA	APL Present : Y /
Purging / De	Equipmnet	:						(If ves	thickness):
							Visual co	onfirmation	with bailer : Y /
							Doinfal	1	
	Walcoment						Kaintai	l past 24 hr:	s(mm):
	Date		RECHALLS					Hell IV,	
		; :			erformed By	:		Well Dia	meter:
	Time Started	:	C)All (alast)					narras con conserva	
7	Fime Stopped:		_ SVVL (start)	·	_ Volume	Removed	:	Bore D	epth (start) :
			SWL (end)	-	Disci	harge Rate	:		Depth (end) :
	Comments .								PL Present: Y /
								(If yes,	, thickness) :
Sampl	ling	Stoate glotte				V-ARROW		-	The state of the s
				D	erformed By :		ALCOHOL:	141 " 5:	
Sam	pling Method :	-		-	enormed by .		-	Well Dia	meter:
	Time Started :	-				Com	oline Death		
					_		pling Depth		
	Tubing Type :				-		SIAIL (Start)		
							SVVL (end)	:	
	Duplicate San	ple Collected?	Y/N		Duplicate :	Sample ID			
					35				
Fleld Ana	llyses						WARE B		
Time	Volume Removed (L)	EC (uS/cm)	рН	Temp	Redox		d Oxygen	SWL	Comments (colour, turb)
: 18	20.1		7 10	(C)	(mV)	(ppm)	(mg/L)	(m)	oudurs, sneen etc)
. 10	3	971	4.17	20.2	-99-5	19.5	1/-	4.4m	thigh
				-	-				TUNGO
	The state of								Mud own
									Teno Cosio
		1							1000
		1							
	*								
	*			and the second of the second					
	*								
-									
sation Criteria	a	+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		
		+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		
l Volume Ca		+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		
l Volume Ca	lculations	+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		300mm
isation Criteria	lculations	+/- 3% 25mm	+/- 0.05	100mm	+/- 10mV	+/- 1	0%	250mm	300mm 196.3

_____m (-)_____ (=)_____

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______L

WELL No : 502 5

- 1	7	1\ /
27	Γ.	$ \setminus $
		<i>/ /</i>

Project No :			Pi	oject ivaine	: 61	- (-11		
Gaug	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN					***		- TO THE REAL PROPERTY OF THE PERTY OF THE PE	
	Date	12/	11/24		Pe	erformed By	y:	-	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Ow
Ga	uging Method	ie.	' 1					W	ell Diameter :
	Time	9	m ====================================	m	Bore Depth	:		LNA	APL Present: Y /
	SWL	3.7	m	Dep	th to LNAPL			(If ves	thickness)
	Comments	:							APL Present : Y /
								50	, thickness) :
Maintaina	ance required						Vieual		with bailer : Y /
	Equipmnet								
Purging / Dev		TO NOT HELD					Rainfal	l past 24 hr	s(mm):
	Date	-	The state of the s	D.	orformed D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4344	atches on the
				P	erformed By:			Well Dia	ameter:
	Purge Method								
	Time Started		SWL (start)	:	_ Volume	Removed	:	Bore D	Depth (start) :
1			SWL (end)	:	Disch	harge Rate	;	Bore I	Depth (end):
	Comments								PL Present : Y /
									, thickness) :
Sampl	ing			A INCOME			70 W.E		I STATISTICS
	Date :			Pe	erformed By:			Well Dia	meter:
	pling Method :		25						
	Time Started:			Tell month		Sam	pling Depth	:	
T	ime Stopped :								
	Tubing Type:				-		SWL (end)		
	Comments:						()	-	
									4)
3	Duplicate San	ple Collected?	Y/N		Duplicate (Sample ID	;		
Field Ana	lyses		SI CONTROL			W. S. C.			SECURE VICE
Field Ana	llyses Volume	EC		Temp	Redox	ALVE.	ed Oxygen	SWL	Comments (colours to
	A STATE OF THE PARTY OF THE PAR	EC (uS/cm)	РН	Temp (C)	Redox (mV)	ALVE.			Comments (colour, tu odours, sheen e
Field Ana	Volume		рН		2000000	Dissolve	ed Oxygen	SWL	
Field Ana	Volume		рН		2000000	Dissolve	ed Oxygen	SWL	
Field Ana	Volume		рН		2000000	Dissolve	ed Oxygen	SWL	
Field Ana	Volume		рН		2000000	Dissolve	ed Oxygen	SWL	
Field Ana	Volume		рН		2000000	Dissolve	ed Oxygen	SWL	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume		pH 6. + 1	(c)	2000000	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen	SWL	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana	Volume Removed (L)	(uS/cm)	18	(c)	(mV)	Dissolvi (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana Time	Volume Removed (L)	(ustem)	6.+1	(c)	(mV)	Dissolvi (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana Time Sation Criteria	Volume Removed (L)	(ustem)	6.+1	(c)	(mV)	Dissolvi (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana Time Sq Sq Volume Ca Diameter	Volume Removed (L)	(ustem)	6.+1	(c)	(mV)	Dissolvi (ppm)	ed Oxygen (mg/L)	SWL (m)	
Field Ana Time Sation Criteria	Volume Removed (L)	(uStem)	6. +1	20.8	(mV)	Dissolvi (ppm)	ed Oxygen (mg/L)	3. 7 m	High Turk
Field Ana Time Sq Sq Volume Ca Diameter	Volume Removed (L)	(ustem)	6.+1	(c)	(mV)	Dissolvi (ppm)	ed Oxygen (mg/L)	SWL (m)	High Turk

____(=)__

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______(E) _____L

WELL No: 502-d af

-		11
		1\ /
	1	J V

	Date	12	111 12 1	M.		orfor- 1 m				
G	Bauging Method	1.0	11/6		Pe			<i>N</i>		
7	Time	9:3	38 .on		Para Donth	. 1/	00	W	/ell Diameter	·:
	SWI	4 3	Sm	Don	_bore Debtu	- 10	m	LN/	APL Present	t:Y / N
	Comments	:	~ (W)	neb	III IO LINAPL			(If yes	s, thickness)	:
										:Y / N
Maintai	nance required							(If yes	s, thickness)	:
Wallita	Fauinma	4.					_Visual c	onfirmation	with bailer	:Y / N
	Equipmine			200			Rainfa	ll past 24 hr	s(mm)	
urging / D	evelopment		A STATE OF	1/4/11/2017				or past at the	o(min).	
	Date	:		P	erformed By			MA-II Di		
	Purge Method				enormed by	•		vveii Dia	ameter:	
	Time Started	:	SWL (start)		Volume	Domes and				
	Time Stopped		SWL (start)		_ Volume	harge Rate			Depth (start)	
	Comments		OVVE (cild)	•——	_ Disc	narge Rate			Depth (end)	
	minerito								PL Present	
								(If yes	, thickness)	:
Sam	pling	POLIDAX.	STATE BARRIES	n en en en	All (Property		N TO SOLL		PARTIE NAME OF	
	Date	:		D	erformed By :			1A/-II D1		ACID STO
Sai	mpling Method	-			monneu by :			Well Dia	imeter:	
8.0	Time Started		72-1-1	-1111		Same	ling Depth			
	Time Stopped	-	- 29		-					
	Tubing Type	:			-		SIMI (and)	:		
	Comments						OVIL (cha)			
	Duplicate Sar	nple Collected?	Y/N		Duplicate	Sample ID :				-
						2 (10) (10) (20)				
Field Ar	alyses									
	THE RESERVE OF THE PERSON NAMED IN COLUMN									
Time	Volume	EC		Temp	Redox	Dissolve	d Oxygen	SWL	Commants (colours turblette
Time	Volume Removed (L)	EC (uS/cm)	рН	Temp (G)	Redox (mV)			841.84		colour, turbidity, sheen etc)
	Removed (L)			(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
		(uS/cm)	pH 1, ∓3	(C)		(ppm)	(mg/L)	841.84	odours,	
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
Time	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
: 44	Removed (L)	(US/cm)	1,73	(C)	(mV) -(24.8	(ppm) 20.2	(mg/L)	(m)	odours,	sheen etc)
: 44	Removed (L)	(uS/cm)		(C)	(mV) - (2 4 - 8	(ppm)	(mg/L)	(m)	odours,	sheen etc)
: 44	Removed (L)	(US/cm)	1,73	(C)	(mV) -(24.8	(ppm) 20.2	(mg/L)	(m)	odours,	sheen etc)
: 44	Removed (L)	(US/cm)	1,73	(C)	(mV) -(24.8	(ppm) 20.2	(mg/L)	(m)	odours,	sheen etc)
44 atton Crite	Removed (L)	(US/cm)	1,73	(C)	(mV) -(24.8	(ppm) 20.2	(mg/L)	(m)	300mm	sheen etc)
: 44	Removed (L)	(US/cm)	1,73	(C)	(mV) -(24.8	(ppm) 20.2	(mg/L)	(m)	odours,	sheen etc)

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______L

WELL No: BHSLS af JV

Project No:										
Gaug		To the			Table 1					
	Date :_	13./4	2 n	1	P	erformed B	y:			
Gau	uging Method :_	17	0						Vell Diameter :	
	Time :_	10:3	3 AT		Bore Depth	18	m	LN	APL Present : Y	1
	SWL:_	1.8 ~		Dep	th to LNAPL			(If ye	s, thickness) :	
	Comments :_							DN.	APL Present: Y	1
Maintaina								(If ye	s, thickness) :	
wamtama	Equipment						Visual co	onfirmation	with bailer : Y	1
	Equipmnet:						Rainfal	l past 24 hi	rs(mm):	
urging / Dev	relopment				NV ET		THE ST		NI COLOR	
	Date:			Pe	erformed By	:		Well Di	ameter :	
	urge Method :_									
	Time Started :_		SWL (start)	;		e Removed	:	Bore I	Depth (start) :	
Т	ime Stopped:		SWL (end)	:		harge Rate	:	Bore	Depth (end):	
	Comments : _							10000	APL Present : Y	
									s, thickness) :	
Sampli	ing		ON A SHOW	第4年2. 李	evel-		32 F 24 E		No Calara	
	Date :			Pe	erformed By	·		Well Dia	ameter:	au o
Samp	oling Method :									
7	Time Started :					Sam	pling Depth	1		
	me Stopped :									
	Tubing Type : _				77.		SWL (end)	:		
	Comments:							-		
	_									
	Equipment:	L-0-"								
	Equipment: Ouplicate Samp	le Collected?	Y/N		Duplicate	Sample ID	1			
Field Ana		le Collected?	Y/N		Duplicate	Sample ID		Allys e	e e e e e e e e e e e e e e e e e e e	
	lyses Volume	ele Collected?		Temp	Duplicate Redox		ed Oxygen	SWL	Comments (color	ur, turb
Field Ana	lyses		Y/N pH	Temp (C)						
Field Ana	lyses Volume	EC			Redox	Dissolv	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	lyses Volume	EC	рН		Redox	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/em)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color	
Field Anal	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color odours, she	
Field Anal	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color odours, she	
Field Anal	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL	Comments (color odours, she	

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______L

WELL No: BHSL afJV

Project No									
Gau	ging								
		13/1	174	7	Pe	erformed B	v ·		
Ga	auging Method :	ie	10			chomica D	у	۸/	ell Diameter :
	auging Method : Time :	10:	12 pm	-	Bore Depth	: 10	4 ~	LNA	APL Present: Y /
	SWL:	3-8	m	Dep	th to LNAPL	:		(If ves	s, thickness):
	Comments:								APL Present : Y / /
									s, thickness) :
Maintain	ance required:						Visual co		with bailer : Y / I
	Equipmnet:			4					Hi
Purging / De						-	Rainfa	ll past 24 hr	s(mm):
Furging / De	Date :	MATERIAL PROPERTY.							
				Р	erformed By	;		Well Dia	ameter:
	Purge Method :								
	Time Started : Time Stopped :		_ SWL (start):		e Removed	:	Bore D	Depth (start) :
			SWL (end):	_ Disc	harge Rate	:		Depth (end):
	Comments.	-				_			PL Present: Y / N
								(if yes	, thickness) :
Samp									
	Date :			_ Pe	erformed By:			Well Dia	meter:
Sarr	pling Method :								
	Time Started :	-			_		pling Depth		
	Time Stopped :						SWL (start)	:	
	Tubing Type :				_		SWL (end)	:	
	Comments :								
	Duplicate Samp	nle Collected?	Y/N		Duplicate	Cample ID			
		one Comanda.			Dublicate	Sample ID			
Field Ana	alyses					3.638			
	Volume	EC	oH.	Temp	Redox	Dissolv	ed Oxygen	SWL	Comments (colour, turbic
Time	Volume Removed (L)	(uS/cm)	рН	Temp (C)	Redox (mV)	Dissolv (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turbic odours, sheen etc)
Time	Volume		рн 6.48				(mg/L)	Marie III	
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	B L AT
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	odours, sheen etc)
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	BHOWN AS
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	B. Light B. Light B. Light Colons
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	BHOWN AS
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	B. Light B. Light B. Light Colons
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	B. Light B. Light B. Light Colons
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	B. Light B. Light B. Light Colons
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 21.5	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 21.5	(mg/L)	(m)	B. Light B. Light B. Light Colons
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 21.5	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 21.5	(mg/L)	(m)	B. Light B. Light B. Light Colons
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 21.5	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uslem) 773	6.48	(C)	(mV)	(ppm) 21. c	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm) 21. c	(mg/L)	(m)	Blown water
Time	Volume Removed (L)	(uslem) 773	6.48	(C)	(mV)	(ppm) 21. c	(mg/L)	(m)	Blown of
lisation Criter	Volume Removed (L)	(uslem) 773	6.48	(C)	(mV)	(ppm) 21. c	(mg/L)	(m)	Blown of
Time	Volume Removed (L)	(us/cm) 773 +1-3%	+/- 0.05	(c) 2.1	(mV) 46.8 +/- 10mV	(ppm) 21.5	(mg/L)	(m) 3.8~	odours, sheen etc) B. Light B. Light B. Light Colours Colours Thy 5.
Time	Volume Removed (L)	(uslem) 773	6.48	(C)	(mV)	(ppm) 21. c	(mg/L)	(m)	adours, sheen etc) B. Lacht B. Lac

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______ (=) _____ L

				roject Name						
Gau	lging									
0	Date	13/11	124		Pe	rformed By	:			
G	auging Method	5.6 m			Para Donth	7		W	/ell Diameter :	
	SWI	5 6 000		Dent	bore Depth	+ 1	~	LN	APL Present : Y	/ N
	Comments			вері	II TO LIVALE.			(ii ye:	APL Present : Y	/ N
									s, thickness) :	, 13
Maintai	inance required						Visual co		with bailer : Y	/ N
								past 24 hr		
urging / D	evelopment						Trainion.	past E 7 III		30
	Date :			Pe	rformed By :			Well Di	ameter:	
	Purge Method :								S.W. W. S.C.W.	
	Time Started :		SWL (start)	:	Volume	Removed	:	Bore I	Depth (start) :	
					Disch	narge Rate	:	= 100 m	Depth (end):	
	Comments :								APL Present : Y	
				0			8	(If yes	s, thickness) :	
Sam	pling									
(a)/ (c)	Date :			Pe	rformed By:			Well Dia	ameter:	
Sa	mpling Method : Time Started :									
	Time Started : Time Stopped :				7:		pling Depth :			
	Tubing Type :				-		SWL (start) : SWL (end) :			_
	Comments :				-		()			
	Dunicate San	ple Collected?	Y/N		Dunlicate	Cample ID		5		
Andrew of the Park	Daplicate Carl	ipic Collected:	1710		Duplicate :	Sample ID				
Field A	nalyses	EC								
Time	Volume Removed (L)	(uS/em)	рН	Temp (C)	Redox (mV)	(ppm)	(mg/L)	SWL (m)	Comments (colour, odours, sheen	
28	5 L	2338	5.75	19.2	174.3	The second second	5 %	VIII)	Light	T. A
-				1,,	1	2000	10		Sone and	
									prasent	
									water.	
					-		-			
								7		
		150				-				
										-
		57.55				-				
			1							
ation Crite	eria	+/- 3%	+/- 0.05		+/- 10mV	+/-	10%			
Volume 0	Calculations								,	
Diameter									300mm	
	ctor	25	50mm	100mm	125mm	150mm	200mm	250mm	196.3	
							. zuumm	Zalimm		
rsion Fac		25mm 0.98	1.96	7.85	31.4	49.1	70.7	125.7		

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
____(X) ____(=) ____L

Project No:

WELL No: BHO19

		1\ /
4	P	1\ /
		<i>) V</i>

Project No	:								
Gau	ging								
	Date auging Method	: 13/11	124		Pe	rformed By	·:		
G	auging Method	: 10	A 8					V	/ell Diameter :
	Time	8:20	AN		_Bore Depth	25.	Sm	IN	APL Present : Y /
	SWL	16-7	2 m	Dep	th to LNAPL			(If ye:	s, thickness) :
	Comments							DN	APL Present: Y /
Material									s, thickness) :
Maintail	nance required			1 1 1 1 1 1 1			Visual co	onfirmation	with bailer : Y /
	Equipmnet						Rainfal	past 24 hr	rs/mm\·
Purging / D	evelopment	DIO SERVICE	O PARTICIPATION OF		THE UNITED AND		Hamilai	r past 24 m	s(mm).
	Date			Pr	erformed By :			Mall Di	ameter :
	Purge Method	:			onomica by .			Well Di	ameter.
	Time Started	:	SWL (start	١.	Volume	Pernoved	;;	Poro I	Donth (steet) :
	Time Stopped		SWL (end):	_ Disch	harge Rate	:	_ Boro	Depth (start) : Depth (end) :
	Comments			·		idigo (tate	*		APL Present : Y /
									s, thickness) :
C	Mac	-		Communication of the Communica	W-1955				,
Sam	oling Date :			De	orformed Bu			M/-II D	40 845 35 5
Sar	npling Method :				erformed By:			_ vveil Dia	ameter :
	Time Started :					Sami	pling Depth		
	Time Stopped :				-				
	Tubing Type :				-	7 (SWL (start)		
	Comments :						- · · · (cita)	-	
	Equipment:	nale Collected	Y/N		Don't set of	0 1 10			
					Dunlicate S	Sample ID:			
-	populatio Carr	ipie Collected?	17.14		pilouto (
Field An	Total Control of the								
Field An	alyses Volume	EC EC		Temp	Redox		ed Oxygen	SWL	
Time	Volume Removed (L)	EC (uS/cm)	рН	Temp (C)					Comments (colour, turb
	alyses Volume	EC			Redox	Dissolve	ed Oxygen (mg/L)	SWL	Camments (colour, turb adours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	рн 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	рН	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	рн 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	рн 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb) odours, sheen etc) Clear water with slight
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb) odours, sheen etc) Clear water with slight
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb) odours, sheen etc) Clear water with slight
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
71me	Volume Removed (L)	EC (UStem)	pH 1.03	(C)	Redox (mV) -158.3	(ppm)	(mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (uS/cm)	pH 1.03	(C)	Redox (mV)	Dissolve (ppm)	(mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
Time	Volume Removed (L)	EC (UStem)	pH 1.03	(C)	Redox (mV) -158.3	(ppm)	(mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc)
sation Crite Volume C	Volume Removed (L) 5 L	EC (UStem)	pH 1.03	(C)	Redox (mV) -158.3	(ppm)	(mg/L)	SWL (m)	Comments (colour, turb odours, sheen etc) Clear water of slight and invent
sation Crite I Volume Con Diameter	Volume Removed (L) 5 L	EC (uStem) 9 0 6	pH 1.03	(C) 20.1L	Redox (mV) - 158.3	Dissolve (ppm) 2.0 +/-1	(mg/L)	SWL (m)	Comments (colour, turb) odours, sheen etc) Clear water with slight
Time	Volume Removed (L) 5 L	EC (UStem)	pH 1.03	(C)	Redox (mV) -158.3	(ppm)	(mg/L)	SWL (m)	Comments (colour, turb) odours, sheen etc) Clear water with slight and invent contants

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
_____(X) ______(=) _____L

WELL No: BHOSOS

a	f.	Λ	/
		ノヽ	1

Gaugin	Date :	14/11	20		Pe	rformed By	;	· · · · ·		
Gaug	ina Method :	\mathcal{O}						W	ell Diameter	·:
	Time :	030	<u> </u>	David	Bore Depth		<u></u>	LNA	APL Present	L; Y / N
	Comments :			ре	N TO LINAPL	<u> </u>		(If yes	s, thickness) API Present	
						•			, thickness)	
							_Visual co	nifirmation	with bailer	Y / N
	Equipmnel:		<u> </u>				Kainfal	l past 24 hr	el minite	
irging / Deve	looment						, даппат	past 24 III	3(IIIII).	
	Date :			Pe	rformed By :	_	::	Well Dia	meter ;	
	rge Method :				·					
Tü	me Started :		SWL (start)	:	Volume	Removed	:	Bore D	Depth (start)	<u>:</u>
			SWL (end)	·	_ Discl	harge Rate	:	_ Bore (Depth (end)	_
'	Comments :			 ··				_	(PL Present , thickness)	•
								_ (II yes	, mickiess)	
Samplin										
	Date:	<u> 1970</u>	24	Pe	rformed By:			Well Dia	meter :	
Sampli Fit	ing Method ; me Steded :	BALLE	<u> </u>							
Tim	ne Stopped :				-		pling Depth SWL (start)			
Tu	ubing Type ;				-	,	SWL (end)	:		
(Comments :				-		, ,			
						·				
Field Analys		EC		Temp	Redax	Dissolve	ed Oxygen	SWL	Comments	icolour kwhldii
N.m.e	SDS Volume Removed (L)	EC (uS/cm)	ρΗ	Temp (C)	Redax (mV)	Dissolve (ppm)	ed Oxygen (mg/L)	SVVL (m)		colour, turbidii , altean eis)
N.m.e	Vojume		_й н 5.55		1		(mg/L)	-	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm)	(mg/L)	(m)	odours	(of a nosate,
Time F	Vojume	(uS/cm)	·	(C)	(mV}	(ppm) 543	(mg/L)	(m)	odours	(of a nosate,
Time F	Valume Removed (L)	(ustern)	\$.55	(C)	(mV)	(ppm) 543	(mg/L)	(m)	- Sta	(of a nosate,
ation Criteria	Valume Removed (L)	(ustern) 445 L	+/- 0.05	(c) 22 S	(mV)	(ppm) 543.2	(mg/L)	(m)	odours	(of a nosate,
ation Criteria Volume Cate	Valume Removed (L)	(ustern)	\$.55	(c) 22 S	(mV) 101. 3	(ppm) 51/3.2	(mg/L)	(m)	300mm	(of a nosate,
ation Criteria Volume Cate Diameter sion Factor	Valume Removed (L)	(us/em) 445 L	+/- 0.05 50mm 1.96	(c) 22 S	(mV)	(ppm) 543.2	(mg/L)	(m)	300mm	(of a nosate,

WELL No: 3/1050

2	f.	1/
		ノV

Gau								2	
	· .							- · · · ·	
	Date:	<u> </u>	25		Pe	rformed By	· ;		
Ga	auging Melhod :	: '६ '						VV	ell Diameter :
	Time :	1.00 4	· (~~		Bore Depth	: 26	m	I NA	APL Present : Y /
	SWL:	25.6	m	Dept	h lo LNAPL	;		(if ves	, thickness) :
	Comments :	:							PL Present : Y /
									, thickness) :
Maintain	nance required :						Visual co		with bailer: Y /
	Equipmnet								min deliber . T
			_				Rainfal	past 24 hr.	s(mm):
urging / De	evelopment		·-	• • • • • • • • • • • • • • • • • • • •					
	Date :			Pe	rformed By			Well Dia	meter :
	Purge Method :				•			**-#	
	Time Started :		SWL (start)	::	Volume	Removed	:	Bore C	epth (start) :
	Time Stopped :		SWL (end)	;	Disci	haroe Rate	:	_ Bore I	Depth (end):
	Comments :	-	,	·			·		PL Present : Y /
		_		· · ·					thickness);
								(II yes	, triickriess) ,
Samp	oling.								
		19111) 4	Po	rformed By ;			Well Dia	meler :
San	· bodieM pnlign	- 120 - 120						vveli Dia	।।।च ल । ,
July	Time Started :	——————————————————————————————————————				Com	pling Depth	 	
,	Time Stopped :						• .		
			-		-		Sivir (stair)	` 	· · · · · · · · · · · · · · · · · · ·
	Comments:				-		SAAL (GIId)		-
			-						
	Equipment: Dublicale Sam	ple Collected?	Y/N		Dunlicate	Sample IO	<u></u>	• • • •	
Fleld An		······				oampio io	·		
Time	Volume	EC	-11	Temp	Redox	Dissolys	d Oxygen	SWL	Comments (colour, turb
7	Removed (L)	(uS/em)	pН	(c)	(a1V)	{ppm}	(mg/L)	(m)	odours, sheen etc)
20 6v~				† 				<u> </u>	
~ (0.~				<u> </u>	_		 		
	· ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>		 		_
. 0			·						
	6)	7.1	5. 8	 		J 61	1		<u></u>
- 1 - 1	4		<u> </u>	 ~~	<u> </u>	<u>ا نسا منز</u>	 		
		-		<u> </u>			 		<u> </u>
~				-					
-D	24	100	7 1	l -					·
	~ 7	<u></u>		-					··
							 	<u> </u>	
									 -
					I				
									
			-						
ation Criter	ria	+/- 3%	+/- 0.05		+/- 10m\/ 1	46.	0%		
sation Criter	ria	+/- 3%	+/- 0,05		+/- 10mV	+/- '	10%		
	ria alculations	+/- 3%	+/- 0.05		+/- 10mV	+/- '	10%		
Volume G	alculations	+/- 3%	+/- 0.05		+/- 10mV	+/- '	10%		300mm
Volume G	alculations				+/- 10mV	+/- '	0%		300mm 196.3
Volume G	alculations	25mm	50mm	100mm	125mm	150mm	200mm	250mm	
Volume G	alculations			100mm 7.85				250mm 125.7	
Volume G Diameter usion Fact	alculations or	25mm 0,98	50mm 1.96	7.85	125mm	150mm	200mm		
Volume G Diameter Insion Fact	alculations Or EPTH (-) WA	25mm 0.98	50mm 1.98 =) WATER	7.85 COLUMN	125mm	150mm	200mm		
Diameter ession Fact	alculations Or EPTH (-) WA	25mm 0,98	50mm 1.98 =) WATER	7.85 COLUMN	125mm	150mm	200mm		
Volume G Diameter Insion Fact	aiculations or EPTH (-) WA m (-)	25mm 0.98 TER LEVEL (50mm 1.96 =) WATER (7.85 COLUMN	125mm 31.4	150mm 49.1	200mm 70.7	125.7	196.3
Volume G Diameter Insion Fact	aiculations or EPTH (-) WA m (-)	25mm 0.98	50mm 1.96 =) WATER (=)	7.85 COLUMN	125mm 31.4	150mm 49.1	200mm 70.7	125.7	196.3

_4		Λ /
a 1	٠	V

	Date	- iP 1a	124		Pe	erformed By	:			•
Gat	uging Method	: 18							/ell Diameter :	
	Time	1 3c	Agl.		Bore Depth	<u> 2.e</u>)m	LN	APL Present : Y	/ / N
		<u> </u>		Depl					s, thickness) : APL Present : Y	,
	O miletto	·					_		APL Present; Y s, thickness) :	
Maintaina	ince required						Visual co	() onfirmation	ı with bailer : Y	/ N
	Equipmnet	·						past 24 h		
rging / Dev	relopment	· · · · · · · · · · · · · · · · · · ·		•				r past 24 H	estimini.	_
	Date:			Pe	erformed By	:		Well DI	ameter :	<u> </u>
P	urge Method :								_	
_	Time Started :	<u> </u>	_ SWL (start)	:	Volume	Removed	;	Bore	Depth (start):	
,	Comments :		_ SAAL (BUG)	·	_ Disc	harge Rate	;		Depth (end) : APL Present : Y	
								_	s, thickness) :	
	· · · · · · · · · · · · · · · · · · ·				····					
Sampl	Date .	41 19 1	. 154.	:						
Sama	: pling Method : pling Method	BALC	12 24	- PE	rformed By:	L	·	vveli D):	arneter:	
	Time Started :				_ ·		pling Depth			
I I	ime Stopped :				_		SWL (start)	:		
	Lubing Type :				_		SWL (end)	·	·	
	Comments.		· · ·	· · ·						
ı	Duplicate S a n	ple Collected?	Y/N		Duplicate	Sample ID :	:			
C1-1-1 A										
Fleld Ana		FC	,	Tomp	Paday	Nicolive	of Ostumen	FOAN	· · ·	
Fleid Ana	lyses Volume Removed (L)	EC (US/em)	рН	Temp	Redox		ed Oxygen	5WL	Comments (co)o	
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	SWL (m)		
	Volume		рН 5.25				(IngiL)	1		
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1		
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	enoic)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(IngiL)	1	odours, she	en alc)
35	Volume Removed (L)	(usicm) 36-186	5.25	(C)	(mV)	(ppm) 29.6	(mg/L)	1	odours, she	en alc)
	Volume Removed (L)	(uS/cm)		(C)	(mV)	(ppm)	(mg/L)	1	odours, she	en alc)
tion Criteri	Volume Removed (L)	(usicm) 36-186	5.25	(C)	(mV)	(ppm) 29.6	(mg/L)	1	odours, she	en alc)
tion Criteri	Volume Removed (L)	(usicm) 36-186	5.25	(C)	(mV)	(ppm) 29.6	(mg/L)	1	odours, she	en alc)
tion Criteri	Volume Removed (L)	(usicm) 36-186	1/- 0.05	(c) 2 \. \q	(mV) 53. Y	(ppm) 29.4 +/-	(mg/L)	(m)	odoura, she	en alc)
tion Criteri	Volume Removed (L)	(usicm) 36-186	5.25	(C)	(mV)	(ppm) 29.6	(mg/L)	1	odoura, she Ven unit Saintes Light Alain 300mm	en alc)

WELL No: BROBS af

Gau				1					
_	Date	18/10/2	<u></u>	<u> </u>	Р	erformed By	:		
Ga	auging Method	- 17 -	<u> </u>	.=			_		l Diameter :
	I IMe		<u>so 191</u>	<u> </u>	Bore Depth):		LN/	PL Present: Y /
	٠,,٠			Dept	in to LNAPL	·:		(if yes	, lhickness) ;
	Comments	:							APL Present : Y /
Maintain	ance required	,					16-1-1		, thickness) ;
TOTAL COLUMN	Fouinmet	:					_visual co	niimatton	with balter : Y /
	ечарине						Rainfal	past 24 hr	simmi:
urging / De	velopment								
	Date		<u> </u>	 Pe	offormed By	• • • • • • • • • • • • • • • • • • •		Well Dis	meter:
1	Purge Method				···-/			770() Die	
	Time Started :		SWL (start)	:	Volum	e Removed		Bore D	epth (start) ;
	Time Slopped :		SWL (end)	:	_ Disc	harge Rate	:	Bore I	Depth (end) :
	Comments:		. , ,		-				PL Present : Y /
			·						thickness) :
								-	
Samp	ling								
	Date:			Pe	rformed By			Well Dla	meter :
San	rpling Method :								
	Time Started :				-		ling Depth		
1	i ime Stoppea :				_	8	SWL (start)	÷	.,
	Tubing Type :				_	;	SWL (end)	:	
	Comments :			 .					<u> </u>
	_ Equipment:	ple Collected?					.		
	Poblicate 28u	ible Collected?	Y/N		Duplicate	Sample ID :		_	
Field An	alvena	······································		· · · · · · · · · · · · · · · · · · ·					
I STATE OF ALL	aryana								
		=-			l'			, , ,	
Time	Volume Removed (1.)	EC	ρH	Temp	Redox	Dissolve	d Oxygen	SWL	Comments (colour, furt
Time	Volume Removed (L)	EC (uSlem)	Ыd	Temp (C)	Redox (mV)	Dissolve (ppm)	d Oxygen (mg/L)	SWL (m)	Communts (colour, furb odours, shean etc)
Time			pН	ŀ	ľ	-	, 	┫.	
Time	Removed (L)	(uS/em)		(C)	(mV)	-	, 	┫.	
Tima		(uS/em)		ŀ	(mV)	-	(ताष्ट्रांL)	┫.	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uS/em)		(C)	(mV)	(ppm)	(ताष्ट्रांL)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ط	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
)L	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
)L	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
Sation Criter	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	
ation Criter	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	odours, sheen etc
ation Criter Volume Co	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm)	(mg/L)	(m) EF(\)\(\)\(\)	odours, sheen etc
sation Criter Volume Ca	Removed (L)	(uslem)	5.	(c)	(mV)	(ppm) (6) & (-1)	(mg/L)	(m)	odours, sheen etc
sation Criter Volume Co	Removed (L)	(uslem)		(c)	(mV)	(ppm)	(mg/L)	(m)	odours, sheen etc
ation Criter Volume Continue C	Removed (L)	(us/em) (us/em) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	+/- 0.05	100mm 7.85	(mV)	(ppm) (ω) たし にない) +1-1 150mm	(mg/L)	(m)	odours, sheen etc
ation Criter Volume Cr Diameter rsion Fact	Removed (L) Lack Argument (L) E 2 U G E 2 U G E 3 U G E 3 U G E 3 U G E 3 U G E 4 U G E 5 U G E 7 U G E 7 U G E 7 U G	(uslem) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	+/- 0.05 50mm 1.96	100mm 7.85	(mV)	(ppm) (ω) たし にない) +1-1 150mm	(mg/L)	(m)	odours, sheen etc
ation Criter Volume Cr Diameter reion Fact	Removed (L) Lack Argument (L) E 2 U G E 2 U G E 3 U G E 3 U G E 3 U G E 3 U G E 4 U G E 5 U G E 7 U G E 7 U G E 7 U G	(us/em) (us/em) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	+/- 0.05 50mm 1.96	100mm 7.85	(mV)	(ppm) (ω) たし にない) +1-1 150mm	(mg/L)	(m)	odours, sheen etc

	ging Date	1 % 1	0 120		D-	erformed B.				
G	euging Method		·		P€	и голинеа ву	`		/ell Dlameter	
·					Bore Depth	: 5.	· / `	I.N.	API Present	· V / N
	SWL	3 4	77.0	Dep	th to LNAPL	:		(If ve:	s. thickness)	1.
	Comments:	<u> </u>							APL Present	
						•			s, thickness)	
Maintair	ance required :						Visual co	onfirmation	n with bailer	: Y / N
	Equipmoet:									
Buraina / De	velopment						Kaintal	past 24 hi	rs(mm);	
- m diug v Di	Date:		<u> </u>	 Pé	erformed By	•		Well Di	ameter :	
	Purge Method :	i			-,			*****		
	Time Started :		SWL (start)	;	Volume	Removed	;	Bore I	Depth (start)	<u>. </u>
	Time Stopped :		SWL (end)	:	— Disci	harge Rate	;	– Bore	Depth (end)	:
	Comments :	·				_		_	APL Present	
				-	•			- (If yes	s, thickness)	<u>.</u>
Samp		N.15 . 1			,		<u></u>			
0	Date :	17/10	124	_ Pe	erformed By :	·		_ Well Dia	ameter:	
San	; piling Method : : Time Started					O	olino C+			
	Time Stopped :				_		pling Depth			
			-				SW! (end)	·	_	
	Comments :				<u>-</u>		arra faud)			
	Duplicate San	ple Collected?	Y/N		Duplicate	Sample ID	-			
										
Fleld An	alyses				9			4		
Time	Volume Removed (L)	EC (uS/cm)	ρH	Temp	Redox		ed Oxygen	5WL		colour, turbidity, , sheen etc)
	<u>a</u> 2			(C)	(mV)	(ppm)	(mg/L)	(m)		
					1		14.	1	المصحا	id witon
Of	24	<i>9,000</i>	6 43	1434		31.5	 	 	1 CANO	100 U 20 00
	4 4	<i>3333</i>	6,43	14.01		31.3			470	assemi
. 0	44	70.30	6.45			31.3	-		473	adime
		733	6. U.S	14:1		31.3	7.		470.	assilvene
		73.37	6.43	74.54		31.)			470.	askeme
. 0[7337	6.43	74.01		31.)			470	andone
		4337	6 43	7 & <u>f</u>		31.)			470.	and open
		4337	6 43	16.25		31.)			470	and open
		4337	6 43			31.)			470	assime
		4337	6 43			31.3			470	assime
		4337	6 4 3			31.5			470	adime
		4337	6 4 3			31.5			470	assenie
			6 4 3			31.3			470	asseme
						31.3			470	asterne
						31.5			970	action
						31.5			970	action
						31.5			970	acione
						31.3			470	asime
						31.5			470	action
Sation Crite		+/- 3%	+/- 0.05		+/- 10mV		10%		470	action
Isation Crite	ria				+/- 10mV				470	action
Isation Crite					+ <i>j</i> - 10mV				470	action
Isation Crite	ria alculations				+/- 10mV				300mm	action
Isation Crite	ria alculations			100mm	+/- 10mV			250mm	470	action
Isation Crite	ria alculations	<i>+j-</i> 3%	+/- 0.05			+/-	10%	250mm 125.7	300mm	action
Isation Crite Il Volume C n Diameter ersion Fac	ria alculations	+/- 3% 25mm 0.98	+/- 0.05	100mm 7.85	125mm	150mm	10%		300mm	action
Isation Crite Il Volume C n Diameter ersion Fac	ria alculations or	+/- 3%	+/- 0.05 50mm 1.96 (=) WATER	100mm 7.85	125mm	150mm	10%		300mm	action

Project No :										
Gaugi	ng		<u> </u>							
	Date		4 24		Pe	erformed By	1			
Gau	ging Method							We	ell Diameter	:
	Time		6 44		Bore Depth	·	T)c	LNALNA	PL Present	Y /
	SWL			Dept	h to LNAPL	:			, thickness)	
	Comments								PL Present	
Maiatalaa									, thickness)	
wantana		:					_visuai co	ntirmation	with bailer:	Υ /
	cquipinite);						Rainfall	past 24 hrs	(mm):	
Purging / Dev	elonment	•	··· ·						·	
20 2 i a i a i	Date:	:	*	Pe	rformed By				meter :	· · · · · ·
Pı	urge Method :					· 		- 17011 DIG	meter,	
	Time Started :		SWL (start)		Volume	Removed	:	Bore D	epth (start) :	
	me Stopped :		SWL (end)		- Disci	harge Rate	: <u></u>	Bore C	Depth (end) :	
	Comments :	-			_	/m/go (1010	·		PL Present :	
	. Alexandre	-			•			_	thickness) :	
	•							_	,	
Sampli	ng									
	Date :			Per	rformed By:	:		Well Dia	meter:	
Samp	ling Method :									
Т	ime Started :						pling Depth :			
Ti	me Stopped ;				_	į	SWŁ (start) :			
1	fubing Type :				_		SWL (end):			
	Comments :	- STATE - CONTRACT - C		•						
_	. Equipment:	ple Collected?								
	Duplie ale Sair	iple Collected?	Y/N		Duplicate	Sample ID	:			
Printed Asset										
Fleid Anai	yses		·		r. : ·			· · · · · · · · · · · · · · · · · · ·	r	
Field Anal	Volume	EC	ρН	Temp	Redox	Dissolve	ed Oxygen	8WL	Commenta (c	
	 	EC (uSicm)	ρΗ		r. : ·	Dissolve (ppm)	ed Oxygen (mg/L)	8WL (m)		olaur, turt Sheen els
	Volume		ρΗ	Temp	Redox		1	1		
	Volume			Temp	Redox (mV)		(mg/L)	1		
	Volume Removed (L)	(uslem)	Q.	Temp (C)	Redox (mV)	(ppm)	(mg/L)	(m)		
	Volume Removed (L)	(uSicm)		Temp (C)	Redox (mV)	(ppm)	(mg/L)	(m)		Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(uslem)	Q.	Temp (C) ABW	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
POT	Volume Removed (L)	(usiom) ATE	R	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
NOT STANGE	Volume Removed (L)	(usion)	8 3	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
Sation Criteries	Volume Removed (L)	(usion)	8 3	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
Isation Criteria	Volume Removed (L)	(usion)	8 3	Temp (G)	Redox (mV)	(ppm)	(mg/L)	(m)	odours,	Sheen alc
Sation Criteries	Volume Removed (L)	(usicm)	1- 0.05	Temp (C)	#/- 10mV	(ppm) C. AT	(mg/L)	(m)	odours,	Sheen alc
Isation Criteria	Volume Removed (L)	(usiom) A T F	+/- 0.05	Temp (G)	Redox (mV)	(ppm) C.A. +/-	(mg/L)	250mm	odours,	Sheen alc
Isation Criteria	Volume Removed (L)	(usicm)	1- 0.05	Temp (C)	#/- 10mV	(ppm) C. AT	(mg/L)	(m)	odours,	Sheen alc
Isation Criteria I Volume Can Diameter ersion Facto	Volume Removed (L)	(usiom) A T F	+/- 0.05	100mm 7.85	#/- 10mV	(ppm) C.A. +/-	(mg/L)	250mm	odours,	Sheen alc
Isation Criteria I Volume Can Diameter ersion Facto	Volume Removed (L)	(usiom) A T F	#I- 0.05	100mm 7.85	#/- 10mV	(ppm) C.A. +/-	(mg/L)	250mm	odours,	Sheen alc

WELL No: 134038_

af J

Project No	:		_ Pr	oject Name	: <u>60</u>	<u>. c</u>	ৃ		
	ging		:					<u> </u>	· . · · · · · · · · · · · · · · · · · ·
	Date	14 111	լ տ		Pe	erformed By	:		
Ga	auging Mathod	<u>: (C_'</u>							Diameter :
	Time	: 10 30			Bore Depth	: 21 3	}~	LN/	APL Present : Y / N
	SWL	: 45 m	<u> </u>	Дер	lh to LNAPL	:		(If yes	APL Present : Y / N s, thickness) :
	Comments	;			_				APL Present: Y / N
								(If yes	, thickness) :
Maintair	nance required :						_Visual co	nfirmation	with bailer: Y / N
	Equipmnet:								
							Rainfa	past 24 hr	s(mm):
Purging / Dr	evelopment								
	Date :			Pe	erformed By	:		Well Dia	ımeter ;
	Purge Method :								
	Time Started :		SWL (start)	7	Volume	Removed	:	Bore D	Depth (start) :
•	Time Stopped :	<u> </u>	SWL (end)	:	 Disci	harge Rate			Depth (end) :
	Comments:				_	-	_		PL Present : Y / N
			-					_	, thickness) :
								_ (, 555	
Same	ling								
		18/4/20	4	Pe	rformed By :	, N		Well Dia	meter:
San	npling Method :	BALLER	_	- '`			<u> </u>		
	Time Started :	10. 40				Sami	oling Depth		
	Time Stopped :				_				
	Tubing Type :				_		SWI (end)	`	
	Comments:				_		V112 (2/14)	`	
				• • •	·				
	Duplicate Sam	ple Collected?	Y/N		Dunlicate	Sample ID			
	• • • • • •				Бардовіс	tample is			
Field An	alvses			•					
		£Ç		Тепр	Redox	Disaba	d Oxygen	SWL	
Time	Volume Removed (L)	(uS/cm)	рH	(C)	(val)	(ррт)	(mg/L)	(m)	Comments (colour, furbidit odours, sheen etc)
ક [.] મંજ	37	698	6.98	20.1	81.4	2+3	%	3/m	Clara witer.
						1		····	
								 	
	i <u>-</u> i								
									
					†				
				1				 -	
			_				 		
		-		i –	·		-		
				 	-		 	 	
	 			 	 			 	
					├			-	
	 	 -		 				 	 -
	 		·	 				<u> </u>	
	 							ļ	ļ
	 		 -	 	\vdash	<u> </u>		 -	ļ
		· - - 		<u> </u>					
				ļ					
	-			-	· ·				
bilisation Crite	rla	+/- 3%	+/- 0,05		+/- 10mV		1084	·	
	.,,,	· /- 378	+1- 0'A9		T/- 10/11V	+/-	1074		
Vell Volume C	alculations								
loo Diameter									300mm
nversion Fact	lor						_		196.3
		25mm	50mm	100mm	125mm	150mm	200mm	250mm	
		0.98	1.96	7.85	31.4	49.1	70.7	125.7	
									<u> </u>
TAL WELL D	EPTH (-) WA	TER LEVEL (=) WATER (COLUMN					
 	m (-)	(=)			•			
		AVATED DOLLE	W / V \ CC	II (EDOIA)			D DES ::-		
	,	NATER COLUM	WV (X)CO	AAFKSION	FACTOR ((=) LITRE	S PER WE	TE AOFAW	1E
	_		(X)			(=)		L	

WELL No: 13H OHBRET JV

Project No	·			roject Name	:: <u>_(</u> ⊘(<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>		
Cont			· · · ·						
Gati	ging . Date	: 18 /	1175		<u>.</u>				
l G	auging Method		4-6-7		P6	erformed By	: 17	10	/ell Diameter :
	Time	_10	2 41		Bore Depth	: -4-5	O m	VV	APL Present: Y / N
	SWL	: 15 8	20 m		th to LNAPL				s, thickness):
									APL Present ; Y / N
									s, thickness) :
Maintair	nance required	;					_Visual co	onfirmation	with bailer : Y / N
	Eduibutiet						Rainfal	l past 24 hr	rs(mm):
Purging / Do	evelopment							<u>.</u>	
	Date	:	<u> </u>	P	erformed By	;		Well Di	ameter :
	Purge Method		- -						
	Time Started	·	SWL (start) :	Volume	Removed	:	Bore (Depth (start) ;
	Time Stopped Comments		SWL (end):	Disc	harge Rate	:		Depth (end):
	Comments	<u> </u>			· ·			_	APL Present: Y / N
								- (ii yes	s, thickness) :
Samı	ding								
-	Date		124	_ P6	erformed By :	:_		Weli Dia	ameter:
Sar	npling Method		CR						
	Time Started:		<u> </u>		_		ling Depth		
l	Tubing Type:	10 15				3	SVVL (Start) SVVL (end)	:	
				•	-		OV12 (EIIG)	·	
	Duplicate San	nple Collected?	Y/N		Duplicate	Şample ID ;			
Field An					•••.				
T TE IO A I		EC	.	Temp	Redox	Dissolve	d Oxygen	SW).	
Time	Vojume Remoyed (L)	(ma/au)	pН	(C)	(mV)	(epm)	(mgiL)	4 .	Comments (colour, turbidity, odours, sheen etc)
La & BAN	44	3134	6.47	20°C	28.1	26.4%		(m)	Tunk of with
111	- 	71 4	18.	/4/ C	120 1	AG .4- 1	<u>-</u>	-q	
			1		1		l	1	1.1. 1
								_	bed ments
									in auto
Stabilisation Crite	ria	+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		
Stabilisation Crite		+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		
Well Volume C		+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		
	alculations	+/- 3%	+/- 0.05		+/- 10mV	+/- 1	0%		300mm
Well Volume C	alculations	25mm	50mm	100mm	125mm	150mm	200mm	250mm	
Well Volume C	alculations			100mm 7.86				250mm 125.7	300mm
Well Volume C estra Dismeter Conversion Fact	alculations or	25mm 0.98	50mm 1.98	7.85	125mm	150mm	200mm		300mm
Well Volume C asing Diameter Conversion Fact OTAL WELL D	atculations or EPTH (-) WA	25mm 0.98 ATER LEVEL (50mm 1.98 (=) WATER	7.85 COLUMN	125mm	150mm	200mm		300mm
Well Volume C asing Diameter Conversion Fact OTAL WELL D	atculations or EPTH (-) WA	25mm 0.98 ATER LEVEL (50mm 1.98 (=) WATER (=)	7.85 COLUMN	125mm 31.4	150mm 49.1	200mm 70.7	125.7	300mm 196.3
Well Volume C asing Diameter Conversion Fact OTAL WELL D	atculations or EPTH (-) WA	25mm 0.98 ATER LEVEL (WATER COLL	50mm 1.98 (=) WATER (=)	7.85 COLUMN NVERSION	125mm 31.4	150mm 49.1 49.1	200mm 70.7	125.7	300mm 196.3

APPENDIX E – WTP SAMPLING AND DISCHARGE REGISTER

The Bays WTP Sampling and Discharge Summary

					ary	рН	Turbidity	Oil and Grease	Hydrocarbon s TRH (C6-C9)	Aluminium	Arsenic	Cadmium	Chromium (VI) Compound s	Cobalt	Copper	Iron	Lead	Manganes e	Nickel	Zinc	Ammonia	Nitrate + nitrite (oxidised nitrogen)	Nitrogen (total)	Perfluoroocta ne sulphonate (PFOS)	Phosphore s (total)
					Sampling	Lab	TSS (Lab)	Visual	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab	Lab
					UoM	pH units	mg/L	Y/N	ug/L	ug/l	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					WPIA Criteria	6.5-8.5			100	250			20					1900				600	1720	0.00023	140
Sample Date	Site / WTP	Source Water	Lab ID	Notes	EPL Criteria	6.5-8.5	15	N	100	55	None	0.7	4.4	1	1.3	300	4.4	80	7	8	910	200	300	0.00023	30
11/07/2024	TBY C-WTP	Untreated	356313		Month 13	8.6	1200	N	<10	<10	<1	<0.1	8	<1	<1	20	<1	19	<1	2	1400	760	6800	0.0031	300
11/07/2024	TBY C-WTP	Treated	356313		Month 13	7.5	10	N	47	10	<1	<0.1	4	<1	<1	30	<1	10	<1	2	110	200	800	<0.0002	310
20/08/2024	TBY C-WTP	Untreated	359609		Month 14	10.8	17000	N	22	110	2	<0.1	67	<1	1	10	<1	<5	<1	1	990	510	2200	0.002	50
20/08/2024	TBY C-WTP	Treated	359609		Month 14	8.1	<5	N	70	100	2	<0.1	13	<1	1	<10	<1	<5	<1	2	51	100	700	0.0002	30
9/09/2024	TBY C-WTP	Untreated	361256		Month 15	9.3	11000	N	<10	<10	15	<0.1	44	<1	1	<10	<1	<5	<1	<1	1900	500	3700	0.0034	240
9/09/2024	TBY C-WTP	Treated	361256		Month 15	7.8	<5	N	64	<10	2	<0.1	11	<1	<1	30	<1	<5	<1	3	360	60	1100	0.0007	50
10/10/2024	TBY C-WTP	Untreated	363656		Month 16	9.9	3300	N	<10	70	<1	<0.1	77	<1	1	<10	<1	<5	1	<1	1800	680	3800	0.0089	50
10/10/2024	TBY C-WTP	Treated	363656		Month 16	7.7	<5	N	68	20	<1	<0.1	<1	<1	<1	<10	<1	<5	1	<1	180	8	700	<0.0002	40
7/11/2024	TBY C-WTP	Untreated	365822		Month 17	10.9	13000	N	<10	360	<1	<0.1	66	<1	2	20	<1	<5	1	<1	840	560	3100	0.002	30
7/11/2024	TBY C-WTP	Treated	365822		Month 17	7.5	<5	N	28	<10	<1	<0.1	<1	<1	<1	10	<1	11	<1	1	590	6	900	<0.0002	40
								VARIATION	OF LICENCE N	O. 21610 - RE	NEWED DISCH	HARGE CRITER	RIA - 05.12.2024	(Conditional	formatting = L	JPDATED)									
						рН	Turbidity	Oil and Grease	Hydrocarbon s TRH (C6-C9)	Aluminium	Arsenic	Cadmium	Chromium (VI) Compound	Cobalt	Copper	Iron	Lead	Manganes e	Nickel	Zinc	Ammonia	Nitrate + nitrite (oxidised nitrogen)	Nitrogen (total)	Perfluoroocta ne sulphonate (PFOS)	Phosphore s (total)
					Sampling UoM	Lab pH units	TSS (Lab) mg/L	Visual Y/N	Lab ug/L	Lab ug/l	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L	Lab ug/L
					EPL Criteria	pri units	mg/L	1/14	ug/L	ug/I	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Sample Date	Site / WTP	Source Water	Lab ID	Notes	Variation (05.12.2024)	6.5-8.5	15	N	None	55	N/A	0.7	15	1	1.3	300	4.4	80	7	8	910	300	1210	0.13	140
3/12/2024	TBY C-WTP	Untreated	367995		Month 18	9.3	7400	N	<10	10	1	<0.1	21	<1	3	<10	<1	<5	2	2	660	650	2700	0.0032	390
3/12/2024	TBY C-WTP	Treated	367995		Month 18	7.6	<5	N	11	<10	<1	<0.1	<1	<1	<1	<10	<1	9	<10	1	570	20	1000	<0.0002	40

The Bays WTP Sampling and Discharge Summary

		Turbidity/TSS	Oil and Grease	TBY Daily discharge volume	TBY Cumulative discharge volume
	Probe	Probe (correlation)	Visual	(Daily report)	(Daily report)
	pH units	NTU	Y/N	L	KL
Discharge Date	6.5-8.5	18	Not visible		
1/07/2024	7.1	1.2	N	1504000	293243.2
2/07/2024	7.1	0.9	N	1915300	295158.5
3/07/2024	7.1	0.3	N	2140900	297299.4
4/07/2024	7	0.7	N	2016700	299316.1
5/07/2024	6.9	3.3	N	1486700	300802.8
6/07/2024	6.9	1.2	N	939600	301742.4
7/07/2024 8/07/2024	6.9 7	1 1.6	N N	1156700 1621300	302899.1 304520.4
9/07/2024	7.1	2.3	N	1021300	304520.4
10/07/2024	6.9	0.7	N	1494700	306015.1
11/07/2024	6.9	0.7	N	1448700	307463.8
12/07/2024	7	1	N	1749900	309213.7
13/07/2024	7	0.6	N	884000	310097.7
14/07/2024	7	1.2	N	945000	311042.7
15/07/2024	7	1.3	N	1062600	312105.3
16/07/2024	7	0.8	N	997500	313102.8
17/07/2024	7	0.2	N	1038800	314141.6
18/07/2024	6.9	0.7	N	1197600	315339.2
19/07/2024	6.8	0.6	N	1135700	316474.9
20/07/2024	7	0.4	N	749000	317223.9
21/07/2024	7	0.4	N	860600	318084.5
22/07/2024	7.1	0.2	N	1225800	319310.3
23/07/2024	7	0.2	N	1367900	320678.2
24/07/2024	7	0.3	N	1466100	322144.3
25/07/2024	7 7	0.3	N N	1354600	323498.9
26/07/2024 27/07/2024	7	0.5	N N	1283700 1097100	324782.6 325879.7
28/07/2024	6.9	0.3	N	950400	326830.1
29/07/2024	7	0.6	N	1186300	328016.4
30/07/2024	7	0.5	N	1296800	329313.2
31/07/2024	7	0.7	N	1228600	330541.8
1/08/2024	7	2	N	1339300	331881.1
2/08/2024	7	0.8	N	1511900	333393
3/08/2024	6.9	0.2	N	991100	334384.1
4/08/2024	6.9	1.3	N	860200	335244.3
5/08/2024	7	1.3	N	1495400	336739.7
6/08/2024	7	0.6	N	1719300	338459
7/08/2024	7.1	1	N	1943000	340402
8/08/2024	7.1	2.3	N	1719900	342121.9
9/08/2024	7.1	1	N	2024800	344146.7
10/08/2024	7	1.1	N	1307100	345453.8
11/08/2024 12/08/2024	7 7	1.3	N N	763700 1702600	346217.5 347920.1
13/08/2024	7	1.3	N N	1942800	347920.1
14/08/2024	7.1	1.8	N	1957400	351820.3
15/08/2024	7	1.9	N	2080900	353901.2
16/08/2024	7	2	N	1960800	355862
17/08/2024	7	0.8	N	1447400	357309.4
18/08/2024	6.9	1.6	N	906700	358216.1
19/08/2024	7	1.8	N	1654500	359870.6
20/08/2024	7	1.4	N	1769300	361639.9
21/08/2024	6.9	1	N	1721700	363361.6
22/08/2024	6.9	0.9	N	1828300	365189.9
23/08/2024	7	1	N	1634300	366824.2
24/08/2024	7	0.6	N	1182200	368006.4
25/08/2024	7	0.3	N	771000	368777.4
26/08/2024	7.1	0.4	N	1422400	370199.8
27/08/2024	7 7 1	0.9	N	2036800	372236.6
28/08/2024	7.1 7.1	1.6 0.9	N N	1872800 1749000	374109.4 375858.4
29/08/2024 30/08/2024	7.1	0.9	N N	1749000 1663000	375858.4 377521.4
31/08/2024	7	0.8	N N	1452300	37/521.4
1/09/2024	6.9	0.7	N	925700	379899.4

2/02/2024	_		l l	4550000	204552.2
2/09/2024	7	0.9	N	1663900	381563.3
3/09/2024 4/09/2024	7	1	N	1767000	383330.3
	7	0.9	N	1764200	385094.5
5/09/2024 6/09/2024	7.1	1.9	N	1866600	386961.1
	6.8	1.6	N	1396900	388358
7/09/2024	7	1.5	N	1388500	389746.5
8/09/2024	7	1.5	N	931500	390678
9/09/2024	7.2	1.6	N	1590300	392268.3
10/09/2024	7	1.3	N	1842900	394111.2
11/09/2024	7.1	1.9	N	2155400	396266.6
12/09/2024	7	2	N	2304400	398571
13/09/2024	7	2.5	N	2113600	400684.6
14/09/2024	7	2.9	N	1627300	402311.9
15/09/2024	7	3.3	N	755400	403067.3
16/09/2024	7.1	2	N	1515800	404583.1
17/09/2024	7.1	1.9	N	1854600	406437.7
18/09/2024	7	2.7	N	2088400	408526.1
19/09/2024	7.1	1.3	N	1903100	410429.2
20/09/2024	7.1	1.7	N	2002300	412431.5
21/09/2024	6.9	1.3	N	1555800	413987.3
22/09/2024	7	0.6	N	1031100	415018.4
23/09/2024	7	0.7	N	1587400	416605.8
24/09/2024	7	0.8	N	1983300	418589.1
25/09/2024	7.1	0.9	N	2125400	420714.5
26/09/2024	7	1.8	N	2194900	422909.4
27/09/2024	7.1	1.3	N	2197700	425107.1
28/09/2024	7	1.1	N	1544700	426651.8
29/09/2024	6.9	2.8	N	997000	427648.8
30/09/2024	7	2.6	N	1854600	429503.4
1/10/2024	7.1	2.9	N	1586900	431090.3
2/10/2024	6.9	2.4	N	1403600	432493.9
3/10/2024	7	2.3	N	1192700	433686.6
4/10/2024	7	2.5	N	1226500	434913.1
5/10/2024	6.9	1.5	N	770900	435684
6/10/2024	6.9	1.5	N	852600	436536.6
7/10/2024	6.9	1.5	N	865100	437401.7
8/10/2024	7	1.2	N	878000	438279.7
9/10/2024	7	2.6	N	944800	439224.5
10/10/2024	7	1.3	N	871600	440096.1
11/10/2024	7	2.4	N	976900	441073
12/10/2024	7	1.2	N	649200	441722.2
13/10/2024	7	1.5	N	727900	442450.1
	7	1.2			442450.1
14/10/2024			N	1199500	444933.8
15/10/2024	6.9	0.7	N	1284200	
16/10/2024	6.9	0.6	N	968400	445902.2
17/10/2024	6.9	0.7	N	904800	446807
18/10/2024	7	0.4	N	813000	447620
19/10/2024	7	0.8	N	639800	448259.8
20/10/2024	7	0.4	N	690200	448950
21/10/2024	7	0.6	N	820200	449770.2
22/10/2024	6.9	0.7	N	1005200	450775.4
23/10/2024	6.9	1.4	N	913600	451689
24/10/2024	6.9	1	N	828400	452517.4
25/10/2024	6.9	2	N	736500	453253.9
26/10/2024	6.9	2	N	498400	453752.3
				425200	454177.5
27/10/2024	6.9	1.6	N	425200	
28/10/2024	6.9 6.9	1.6 1.2	N N	613600	454791.1
28/10/2024 29/10/2024					454791.1 455552.3
28/10/2024 29/10/2024 30/10/2024	6.9 6.9 6.9	1.2 0.8 0.6	N N N	613600 761200 760300	454791.1 455552.3 456312.6
28/10/2024 29/10/2024	6.9 6.9	1.2 0.8	N N	613600 761200	454791.1 455552.3
28/10/2024 29/10/2024 30/10/2024	6.9 6.9 6.9	1.2 0.8 0.6	N N N	613600 761200 760300	454791.1 455552.3 456312.6
28/10/2024 29/10/2024 30/10/2024 31/10/2024	6.9 6.9 6.9 6.9	1.2 0.8 0.6 0.8	N N N	613600 761200 760300 968500	454791.1 455552.3 456312.6 457281.1
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024	6.9 6.9 6.9 6.9	1.2 0.8 0.6 0.8 1.5	N N N N	613600 761200 760300 968500 846300	454791.1 455552.3 456312.6 457281.1 458127.4
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024	6.9 6.9 6.9 6.9 6.9	1.2 0.8 0.6 0.8 1.5	N N N N	613600 761200 760300 968500 846300 649900	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 7.1	1.2 0.8 0.6 0.8 1.5 2.4 1.8	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 7.1	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024 7/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9 7	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4 2.2 1.8	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700 511800	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6 461845.4
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024 8/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9 7 7.2 7.2	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4 2.2 1.8 1.5	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700 511800 656200	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6 461845.4 462501.6
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024 7/11/2024 8/11/2024 9/11/2024 10/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9 7 7.2 7.2 7.2 7.1	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4 2.2 1.8 1.5	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700 511800 656200 289300	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6 461845.4 462501.6 462790.9
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024 7/11/2024 8/11/2024 9/11/2024 10/11/2024 11/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9 7 7.2 7.2 7.2 7.1	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4 2.2 1.8 1.5 2.0	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700 511800 656200 289300 411600 933200	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6 461845.4 462501.6 462790.9 463202.5 464135.7
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024 7/11/2024 8/11/2024 9/11/2024 10/11/2024 11/11/2024 12/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9 7 7.2 7.2 7.2 7.1 7 6.9	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4 2.2 1.8 1.5 2 0.8 0.7 0.7	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700 511800 656200 289300 411600 933200 725800	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6 461845.4 462501.6 462790.9 463202.5 464135.7 464861.5
28/10/2024 29/10/2024 30/10/2024 31/10/2024 1/11/2024 2/11/2024 3/11/2024 4/11/2024 5/11/2024 6/11/2024 7/11/2024 8/11/2024 9/11/2024 10/11/2024 11/11/2024	6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.1 7.2 6.9 7 7.2 7.2 7.2 7.1 7	1.2 0.8 0.6 0.8 1.5 2.4 1.8 1.3 1.4 2.2 1.8 1.5 2 0.8	N N N N N N N N N N N N N N N N N N N	613600 761200 760300 968500 846300 649900 373300 650100 754200 778700 511800 656200 289300 411600 933200	454791.1 455552.3 456312.6 457281.1 458127.4 458777.3 459150.6 459800.7 460554.9 461333.6 461845.4 462501.6 462790.9 463202.5 464135.7

16/11/2024	7	1.6	N	644200	467808.4
17/11/2024	7	0.7	N	611500	468419.9
18/11/2024	7	2.9	N	982800	469402.7
19/11/2024	7	3.2	N	817400	470220.1
20/11/2024	6.9	0.6	N	648500	470868.6
21/11/2024	6.9	0.3	N	666600	471535.2
22/11/2024	7.1	0.9	N	394300	471929.5
23/11/2024	6.9	1	N	459400	472388.9
24/11/2024	6.9	0.7	N	421200	472810.1
25/11/2024	6.9	0.9	N	861500	473671.6
26/11/2024	7	0.5	N	654500	474326.1
27/11/2024	7	4.7	N	548300	474874.4
28/11/2024	6.9	3	N	941200	475815.6
29/11/2024	7.2	3.8	N	916500	476732.1
30/11/2024	7	0.2	N	1040800	477772.9
1/12/2024	6.9	1.5	N	768800	478541.7
2/12/2024	7	2.7	N	569300	479111
3/12/2024	7	2	N N	456000	479567
4/12/2024	7	1	N N	605700	480172.7
5/12/2024	7	2.1	N N	522300	480695
6/12/2024	6.9	2.1	N	609600	481304.6
7/12/2024	7	1.8	N	845400	482150
8/12/2024	7	1.2	N N	512000	482662
9/12/2024	7	1.3	N	806200	483468.2
10/12/2024	7.1	1.4	N N	588300	484056.5
11/12/2024	6.8	1.5	N N	171300	484227.8
12/12/2024	7.2	2.6	N N	506500	484734.3
13/12/2024	7	3.3	N N	602900	485337.2
14/12/2024	6.9	5.8	N N	489300	
15/12/2024	7	9.8	N N	507200	485826.5 486333.7
16/12/2024	7.1	6.5	N N	475200	486808.9
17/12/2024	7.1	8.4	N N	580000	487388.9
18/12/2024	7.1	7.2	N N	496500	487885.4
19/12/2024	7.2	6	N N	437400	488322.8
20/12/2024	7.1	1.9	N N	333200	488656
21/12/2024	7.1	2	N	387900	489043.9
22/12/2024	7	2.6	N N	347900	489391.8
23/12/2024	7	2.1	N N	303700	489695.5
	7	1.9	N N	337200	490032.7
24/12/2024	7	1.7	N N		
25/12/2024				159600	490192.3
26/12/2024	7	1.7	N N	127800	490320.1
27/12/2024	7	1.7	N	428200	490748.3
28/12/2024	7	1.8	N	592900	491341.2
29/12/2024	7	2	N	386900	491728.1
30/12/2024	7	2.1	N	358600	492086.7
31/12/2024	7	1.7	N	326100	492412.8

customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 365822

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	TBY - WTP
Number of Samples	2 Water
Date samples received	07/11/2024
Date completed instructions received	07/11/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	12/11/2024	
Date of Issue	12/11/2024	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Envirolab Reference: 365822 Revision No: R00

vTRH(C6-C10)/BTEXN in Water			
Our Reference		365822-1	365822-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		07/11/2024	07/11/2024
Type of sample		Water	Water
Date extracted	-	08/11/2024	08/11/2024
Date analysed	-	11/11/2024	11/11/2024
TRH C ₆ - C ₉	μg/L	<10	28
TRH C ₆ - C ₁₀	μg/L	33	31
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	30	31
Benzene	μg/L	<1	<1
Toluene	μg/L	2	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	1	<1
Naphthalene	μg/L	1	<1
Surrogate Dibromofluoromethane	%	101	101
Surrogate Toluene-d8	%	100	100
Surrogate 4-Bromofluorobenzene	%	101	99

Envirolab Reference: 365822

svTRH (C10-C40) in Water			
Our Reference		365822-1	365822-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		07/11/2024	07/11/2024
Type of sample		Water	Water
Date extracted	-	08/11/2024	08/11/2024
Date analysed	-	09/11/2024	09/11/2024
TRH C ₁₀ - C ₁₄	μg/L	2,400	320
TRH C ₁₅ - C ₂₈	μg/L	8,400	220
TRH C ₂₉ - C ₃₆	μg/L	3,400	<100
Total +ve TRH (C10-C36)	μg/L	14,000	540
TRH >C10 - C16	μg/L	4,200	490
TRH >C ₁₆ - C ₃₄	μg/L	9,300	<100
TRH >C ₃₄ - C ₄₀	μg/L	1,700	<100
Total +ve TRH (>C10-C40)	μg/L	15,000	490
Surrogate o-Terphenyl	%	#	94

Envirolab Reference: 365822 Revision No: R00

PFAS in Water TRACE Short			
Our Reference		365822-1	365822-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		07/11/2024	07/11/2024
Type of sample		Water	Water
Date prepared	-	08/11/2024	08/11/2024
Date analysed	-	08/11/2024	08/11/2024
Perfluorobutanesulfonic acid	μg/L	0.0044	<0.002
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0092	<0.0002
Perfluorooctanesulfonic acid PFOS	μg/L	0.002	<0.0002
Perfluorooctanoic acid PFOA	μg/L	0.001	<0.0002
6:2 FTS	μg/L	0.002	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	68	76
Surrogate ¹³ C ₂ PFOA	%	98	96
Extracted ISTD 13 C ₃ PFBS	%	65	34
Extracted ISTD 18 O2 PFHxS	%	85	85
Extracted ISTD 13 C4 PFOS	%	93	82
Extracted ISTD 13 C ₄ PFOA	%	74	77
Extracted ISTD ¹³ C ₂ 6:2FTS	%	107	93
Extracted ISTD ¹³ C ₂ 8:2FTS	%	110	96
Total Positive PFHxS & PFOS	μg/L	0.011	<0.0002
Total Positive PFOS & PFOA	μg/L	0.0033	<0.0002
Total Positive PFAS	μg/L	0.019	<0.0002

Envirolab Reference: 365822

All metals in water-dissolved			
Our Reference		365822-1	365822-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		07/11/2024	07/11/2024
Type of sample		Water	Water
Date prepared	-	08/11/2024	08/11/2024
Date analysed	-	08/11/2024	08/11/2024
Copper-Dissolved	μg/L	2	<1
Zinc-Dissolved	μg/L	<1	1
Nickel-Dissolved	μg/L	1	<1
Iron-Dissolved	μg/L	20	10
Cadmium-Dissolved	μg/L	<0.1	<0.1
Arsenic-Dissolved	μg/L	<1	<1
Manganese-Dissolved	μg/L	<5	11
Cobalt-Dissolved	μg/L	<1	<1
Aluminium-Dissolved	μg/L	360	<10
Lead-Dissolved	μg/L	<1	<1

Envirolab Reference: 365822

Cations in water Dissolved			
Our Reference		365822-1	365822-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		07/11/2024	07/11/2024
Type of sample		Water	Water
Date digested	-	08/11/2024	08/11/2024
Date analysed	-	08/11/2024	08/11/2024
Magnesium - Dissolved	mg/L	<0.5	96

Envirolab Reference: 365822

Miscellaneous Inorganics			
Our Reference		365822-1	365822-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		07/11/2024	07/11/2024
Type of sample		Water	Water
Date prepared	-	07/11/2024	07/11/2024
Date analysed	-	07/11/2024	07/11/2024
рН	pH Units	10.9	7.5
Turbidity	NTU	[NT]	0.3
Total Suspended Solids	mg/L	13,000	<5
Hexavalent Chromium, Cr6+ Low Level	mg/L	0.066	<0.001
Ammonia as N in water	mg/L	0.84	0.59
Nitrate as N in water	mg/L	0.34	<0.005
Nitrite as N in water	mg/L	0.22	<0.005
NOx as N in water	mg/L	0.56	0.006
Total Nitrogen in water	mg/L	3.1	0.9
Phosphate as P in water	mg/L	<0.005	0.006
TKN in water	mg/L	2.6	0.9
Organic Nitrogen as N	mg/L	1.8	0.3
Electrical Conductivity	μS/cm	15,000	14,000
Total Dissolved Solids (grav)	mg/L	10,000	9,400
Total Phosphorus	mg/L	0.03	0.04

Envirolab Reference: 365822

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Total Phosphorus determined after persulphate digestion followed by colourimetric analysis.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).

Envirolab Reference: 365822

Method ID	Methodology Summary
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 365822

QUALITY CONTR	ROL: vTRH(0	C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			08/11/2024	1	08/11/2024	11/11/2024		08/11/2024	
Date analysed	-			11/11/2024	1	11/11/2024	12/11/2024		11/11/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	100	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	33	40	19	100	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	102	
Toluene	μg/L	1	Org-023	<1	1	2	2	0	100	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	100	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	99	
o-xylene	μg/L	1	Org-023	<1	1	1	1	0	100	
Naphthalene	μg/L	1	Org-023	<1	1	1	1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	100	1	101	101	0	101	
Surrogate Toluene-d8	%		Org-023	100	1	100	101	1	101	
Surrogate 4-Bromofluorobenzene	%		Org-023	99	1	101	103	2	100	

Envirolab Reference: 365822

QUALITY CONTROL: svTRH (C10-C40) in Water							plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			08/11/2024	[NT]		[NT]	[NT]	08/11/2024	
Date analysed	-			08/11/2024	[NT]		[NT]	[NT]	08/11/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	117	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	120	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	117	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	120	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	96	[NT]		[NT]	[NT]	110	

Envirolab Reference: 365822

QUALITY CONT	ROL: PFAS	S in Water	TRACE Short			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			08/11/2024	[NT]		[NT]	[NT]	08/11/2024	
Date analysed	-			08/11/2024	[NT]		[NT]	[NT]	08/11/2024	
Perfluorobutanesulfonic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	95	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	101	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	96	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	95	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	101	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	95	
Surrogate ¹³ C ₈ PFOS	%		Org-029	106	[NT]		[NT]	[NT]	100	
Surrogate ¹³ C ₂ PFOA	%		Org-029	101	[NT]		[NT]	[NT]	98	
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	77	[NT]		[NT]	[NT]	86	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	73	[NT]		[NT]	[NT]	86	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	79	[NT]		[NT]	[NT]	84	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	84	[NT]		[NT]	[NT]	94	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	91	[NT]		[NT]	[NT]	119	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	87	[NT]		[NT]	[NT]	116	

Envirolab Reference: 365822

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			08/11/2024	[NT]		[NT]	[NT]	08/11/2024	
Date analysed	-			08/11/2024	[NT]		[NT]	[NT]	08/11/2024	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	84	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	87	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	84	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	81	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	96	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	83	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	84	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	96	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	

Envirolab Reference: 365822

QUALITY CONTROL: Cations in water Dissolved				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			08/11/2024	[NT]	[NT]		[NT]	08/11/2024	
Date analysed	-			08/11/2024	[NT]	[NT]		[NT]	08/11/2024	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]		[NT]	95	

Envirolab Reference: 365822

QUALITY CO	NTROL: Mis	cellaneοι	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			07/11/2024	1	07/11/2024	07/11/2024		07/11/2024	
Date analysed	-			07/11/2024	1	07/11/2024	07/11/2024		07/11/2024	
рН	pH Units		Inorg-001	[NT]	1	10.9	[NT]		100	
Turbidity	NTU	0.1	Inorg-022	<0.1	1		[NT]		99	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	13000	[NT]		102	
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	0.066	[NT]		101	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.84	[NT]		93	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.34	[NT]		90	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.22	[NT]		85	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.56	[NT]		89	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	3.1	[NT]		89	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	[NT]		89	
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	2.6	[NT]		[NT]	
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	1	1.8	[NT]		[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	15000	[NT]		96	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	10000	[NT]		104	
Total Phosphorus	mg/L	0.01	Inorg-060	<0.01	1	0.03	0.03	0	114	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 365822

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 365822 Page | 17 of 18

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate is not possible to report as the high concentration of analytes in sample 365822-1 have caused interference.

Envirolab Reference: 365822 Page | 18 of 18

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 367995

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	TBY - WTP
Number of Samples	2 Water
Date samples received	03/12/2024
Date completed instructions received	03/12/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	10/12/2024						
Date of Issue	10/12/2024						
NATA Accreditation Number 2901. 7	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/	EC 17025 - Testing. Tests not covered by NATA are denoted with *						

vTRH(C6-C10)/BTEXN in Water			
Our Reference		367995-1	367995-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		03/12/2024	03/12/2024
Type of sample		Water	Water
Date extracted	-	05/12/2024	05/12/2024
Date analysed	-	06/12/2024	06/12/2024
TRH C ₆ - C ₉	μg/L	<10	11
TRH C ₆ - C ₁₀	μg/L	<10	14
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	14
Benzene	μg/L	<1	<1
Toluene	μg/L	3	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	98	103
Surrogate Toluene-d8	%	92	102
Surrogate 4-Bromofluorobenzene	%	101	96

Envirolab Reference: 367995

svTRH (C10-C40) in Water			
Our Reference		367995-1	367995-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		03/12/2024	03/12/2024
Type of sample		Water	Water
Date extracted	-	04/12/2024	04/12/2024
Date analysed	-	05/12/2024	04/12/2024
TRH C ₁₀ - C ₁₄	μg/L	400	110
TRH C ₁₅ - C ₂₈	μg/L	7,400	<100
TRH C ₂₉ - C ₃₆	μg/L	6,700	<100
Total +ve TRH (C10-C36)	μg/L	14,000	110
TRH >C10 - C16	μg/L	850	140
TRH >C ₁₆ - C ₃₄	μg/L	12,000	<100
TRH >C ₃₄ - C ₄₀	μg/L	3,200	<100
Total +ve TRH (>C10-C40)	μg/L	16,000	140
Surrogate o-Terphenyl	%	#	90

PFAS in Water TRACE Short			
Our Reference		367995-1	367995-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		03/12/2024	03/12/2024
Type of sample		Water	Water
Date prepared	-	06/12/2024	06/12/2024
Date analysed	-	06/12/2024	06/12/2024
Perfluorobutanesulfonic acid	μg/L	0.0047	<0.0004
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.011	<0.0002
Perfluorooctanesulfonic acid PFOS	μg/L	0.0083	<0.0002
Perfluorooctanoic acid PFOA	μg/L	0.0032	<0.0002
6:2 FTS	μg/L	0.0006	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	108	104
Surrogate ¹³ C ₂ PFOA	%	101	106
Extracted ISTD 13 C3 PFBS	%	83	56
Extracted ISTD 18 O2 PFHxS	%	106	107
Extracted ISTD 13 C4 PFOS	%	84	99
Extracted ISTD 13 C ₄ PFOA	%	77	86
Extracted ISTD ¹³ C ₂ 6:2FTS	%	106	110
Extracted ISTD 13 C ₂ 8:2FTS	%	136	134
Total Positive PFHxS & PFOS	μg/L	0.019	<0.0002
Total Positive PFOS & PFOA	μg/L	0.012	<0.0002
Total Positive PFAS	μg/L	0.028	<0.0002

Envirolab Reference: 367995

All metals in water-dissolved			
Our Reference		367995-1	367995-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		03/12/2024	03/12/2024
Type of sample		Water	Water
Date prepared	-	04/12/2024	04/12/2024
Date analysed	-	04/12/2024	04/12/2024
Copper-Dissolved	μg/L	3	<1
Zinc-Dissolved	μg/L	2	1
Nickel-Dissolved	μg/L	2	<1
Iron-Dissolved	μg/L	<10	<10
Cadmium-Dissolved	μg/L	<0.1	<0.1
Arsenic-Dissolved	μg/L	1	<1
Manganese-Dissolved	μg/L	<5	9
Cobalt-Dissolved	μg/L	<1	<1
Aluminium-Dissolved	μg/L	10	<10
Lead-Dissolved	μg/L	<1	<1

Cations in water Dissolved			
Our Reference		367995-1	367995-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		03/12/2024	03/12/2024
Type of sample		Water	Water
Date digested	-	04/12/2024	04/12/2024
Date analysed	-	06/12/2024	06/12/2024
Magnesium - Dissolved	mg/L	73	130

Miscellaneous Inorganics			
Our Reference		367995-1	367995-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		03/12/2024	03/12/2024
Type of sample		Water	Water
Date prepared	-	03/12/2024	03/12/2024
Date analysed	-	03/12/2024	03/12/2024
рН	pH Units	9.3	7.6
Turbidity	NTU	NT	1.2
Total Suspended Solids	mg/L	7,400	<5
Total Dissolved Solids (grav)	mg/L	6,900	8,600
Electrical Conductivity	μS/cm	11,000	13,000
Hexavalent Chromium, Cr6+ Low Level	mg/L	0.021	<0.001
Ammonia as N in water	mg/L	0.66	0.57
Nitrate as N in water	mg/L	0.27	0.02
Nitrite as N in water	mg/L	0.38	<0.005
NOx as N in water	mg/L	0.65	0.02
Total Nitrogen in water	mg/L	2.7	1.0
TKN in water	mg/L	2.0	1
Phosphate as P in water	mg/L	0.069	0.04
Organic Nitrogen as N	mg/L	1.3	0.4
Total Phosphorus	mg/L	0.39	0.04

Envirolab Reference: 367995

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Total Phosphorus determined after persulphate digestion followed by colourimetric analysis.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).

Envirolab Reference: 367995

Method ID	Methodology Summary
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 367995

QUALITY CONTR	ROL: vTRH(C6-C10)/E	BTEXN in Water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			05/12/2024	[NT]		[NT]	[NT]	05/12/2024		
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	99		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	99		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	107		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	102	[NT]		[NT]	[NT]	98		
Surrogate Toluene-d8	%		Org-023	97	[NT]		[NT]	[NT]	101		
Surrogate 4-Bromofluorobenzene	%		Org-023	101	[NT]		[NT]	[NT]	96		

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/12/2024	[NT]		[NT]	[NT]	04/12/2024	
Date analysed	-			04/12/2024	[NT]		[NT]	[NT]	04/12/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	116	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	116	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	90	[NT]		[NT]	[NT]	118	

QUALITY CON	TROL: PFAS	in Water	TRACE Short			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024	
Perfluorobutanesulfonic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	107	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	113	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	107	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	115	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	108	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	105	
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	[NT]		[NT]	[NT]	98	
Surrogate ¹³ C ₂ PFOA	%		Org-029	101	[NT]		[NT]	[NT]	98	
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	85	[NT]		[NT]	[NT]	86	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	87	[NT]		[NT]	[NT]	92	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	90	[NT]		[NT]	[NT]	96	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	84	[NT]		[NT]	[NT]	86	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	87	[NT]		[NT]	[NT]	113	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	94	[NT]		[NT]	[NT]	127	

Envirolab Reference: 367995

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date prepared	-			04/12/2024	[NT]		[NT]	[NT]	04/12/2024		
Date analysed	-			04/12/2024	[NT]		[NT]	[NT]	04/12/2024		
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106		
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	109		
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106		
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	96		
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	102		
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102		
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	106		
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	109		
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	111		
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100		

QUALITY CON	ITROL: Cation	ons in wa	ter Dissolved		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date digested	-			04/12/2024	[NT]		[NT]	[NT]	04/12/2024		
Date analysed	-			06/12/2024	[NT]		[NT]	[NT]	06/12/2024		
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	98		

Envirolab Reference: 367995

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	367995-2	
Date prepared	-			03/12/2024	1	03/12/2024	03/12/2024		03/12/2024	03/12/2024	
Date analysed	-			03/12/2024	1	03/12/2024	03/12/2024		03/12/2024	03/12/2024	
pH	pH Units		Inorg-001	[NT]	1	9.3	[NT]		100	[NT]	
Turbidity	NTU	0.1	Inorg-022	<0.1	1	NT	[NT]		89	[NT]	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	7400	[NT]		82	[NT]	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	6900	[NT]		103	[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	11000	[NT]		94	[NT]	
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	0.021	[NT]		97	[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.66	[NT]		97	[NT]	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.27	[NT]		101	[NT]	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.38	[NT]		89	[NT]	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.65	[NT]		100	[NT]	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	2.7	[NT]		87	[NT]	
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	2.0	[NT]		[NT]	[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.069	[NT]		91	[NT]	
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	1	1.3	[NT]		[NT]	[NT]	
Total Phosphorus	mg/L	0.01	Inorg-060	<0.01	1	0.39	0.40	3	115	95	

QUALITY CO	NTROL: Mis	cellaneou	ıs Inorganics			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-				2	03/12/2024	03/12/2024			[NT]		
Date analysed	-				2	03/12/2024	03/12/2024			[NT]		
рН	pH Units		Inorg-001		2	7.6	[NT]			[NT]		
Turbidity	NTU	0.1	Inorg-022		2	1.2	1.1	9		[NT]		
Total Suspended Solids	mg/L	5	Inorg-019		2	<5	[NT]			[NT]		
Total Dissolved Solids (grav)	mg/L	5	Inorg-018		2	8600	[NT]			[NT]		
Electrical Conductivity	μS/cm	1	Inorg-002		2	13000	[NT]			[NT]		
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118		2	<0.001	<0.001	0		[NT]		
Ammonia as N in water	mg/L	0.005	Inorg-057		2	0.57	[NT]			[NT]		
Nitrate as N in water	mg/L	0.005	Inorg-055		2	0.02	[NT]			[NT]		
Nitrite as N in water	mg/L	0.005	Inorg-055		2	<0.005	[NT]			[NT]		
NOx as N in water	mg/L	0.005	Inorg-055		2	0.02	[NT]			[NT]		
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		2	1.0	[NT]			[NT]		
TKN in water	mg/L	0.1	Inorg-062		2	1	[NT]			[NT]		
Phosphate as P in water	mg/L	0.005	Inorg-060		2	0.04	[NT]			[NT]		
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127		2	0.4	[NT]			[NT]		

Envirolab Reference: 367995

Page | 15 of 19 Revision No: R00

QUALITY CO	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Total Phosphorus	mg/L	0.01	Inorg-060	[NT]	2	0.04			[NT]	

Envirolab Reference: 367995

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 367995

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 367995 Page | 18 of 19

Report Comments

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate is not possible to report as the high concentration of analytes in sample 367995-1 have caused interference.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Turbidity: Denotes analysis could not be performed due to high sediment level present in the sample.

Envirolab Reference: 367995

Revision No: R00

Page | 19 of 19

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 363656

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	TBY - WTP
Number of Samples	2 Water
Date samples received	10/10/2024
Date completed instructions received	10/10/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	15/10/2024	
Date of Issue	15/10/2024	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

vTRH(C6-C10)/BTEXN in Water			
Our Reference		363656-1	363656-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		10/10/2024	10/10/2024
Type of sample		Water	Water
Date extracted	-	11/10/2024	11/10/2024
Date analysed	-	14/10/2024	14/10/2024
TRH C ₆ - C ₉	μg/L	<10	68
TRH C ₆ - C ₁₀	μg/L	<10	70
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	70
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	106	107
Surrogate Toluene-d8	%	98	97
Surrogate 4-Bromofluorobenzene	%	96	81

Envirolab Reference: 363656

svTRH (C10-C40) in Water			
Our Reference		363656-1	363656-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		10/10/2024	10/10/2024
Type of sample		Water	Water
Date extracted	-	11/10/2024	11/10/2024
Date analysed	-	12/10/2024	12/10/2024
TRH C ₁₀ - C ₁₄	μg/L	220	<50
TRH C ₁₅ - C ₂₈	μg/L	1,700	<100
TRH C ₂₉ - C ₃₆	μg/L	850	<100
Total +ve TRH (C10-C36)	μg/L	2,800	<50
TRH >C10 - C16	μg/L	450	<50
TRH >C ₁₆ - C ₃₄	μg/L	2,100	<100
TRH >C ₃₄ - C ₄₀	μg/L	380	<100
Total +ve TRH (>C10-C40)	μg/L	3,000	<50
Surrogate o-Terphenyl	%	#	115

PFAS in Water TRACE Short			
Our Reference		363656-1	363656-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		10/10/2024	10/10/2024
Type of sample		Water	Water
Date prepared	-	11/10/2024	11/10/2024
Date analysed	-	11/10/2024	11/10/2024
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.0002	<0.0002
Perfluorooctanesulfonic acid PFOS	μg/L	0.0089	<0.0002
Perfluorooctanoic acid PFOA	μg/L	0.0021	<0.0002
6:2 FTS	μg/L	<0.0004	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	108	99
Surrogate ¹³ C ₂ PFOA	%	119	108
Extracted ISTD 18 O ₂ PFHxS	%	123	113
Extracted ISTD 13 C4 PFOS	%	78	82
Extracted ISTD 13 C4 PFOA	%	75	72
Extracted ISTD ¹³ C ₂ 6:2FTS	%	#	#
Extracted ISTD ¹³ C ₂ 8:2FTS	%	#	194
Total Positive PFHxS & PFOS	μg/L	0.0089	<0.0002
Total Positive PFOS & PFOA	μg/L	0.011	<0.0002
Total Positive PFAS	μg/L	0.011	<0.0002

All metals in water-dissolved			
Our Reference		363656-1	363656-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		10/10/2024	10/10/2024
Type of sample		Water	Water
Date prepared	-	11/10/2024	11/10/2024
Date analysed	-	11/10/2024	11/10/2024
Copper-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	<1	<1
Nickel-Dissolved	μg/L	1	1
Iron-Dissolved	μg/L	<10	<10
Cadmium-Dissolved	μg/L	<0.1	<0.1
Arsenic-Dissolved	μg/L	<1	<1
Manganese-Dissolved	μg/L	<5	<5
Cobalt-Dissolved	μg/L	<1	<1
Aluminium-Dissolved	μg/L	70	20
Lead-Dissolved	μg/L	<1	<1

Cations in water Dissolved			
Our Reference		363656-1	363656-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		10/10/2024	10/10/2024
Type of sample		Water	Water
Date digested	-	11/10/2024	11/10/2024
Date analysed	-	11/10/2024	11/10/2024
Magnesium - Dissolved	mg/L	91	200

Miscellaneous Inorganics			
Our Reference		363656-1	363656-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		10/10/2024	10/10/2024
Type of sample		Water	Water
Date prepared	-	10/10/2024	10/10/2024
Date analysed	-	10/10/2024	10/10/2024
рН	pH Units	9.9	7.7
Turbidity	NTU	NT	0.8
Total Suspended Solids	mg/L	3,300	<5
Hexavalent Chromium, Cr6+ Low Level	mg/L	0.077	<0.001
Ammonia as N in water	mg/L	1.8	0.18
Nitrate as N in water	mg/L	0.51	0.007
Nitrite as N in water	mg/L	0.17	<0.005
NOx as N in water	mg/L	0.68	0.008
Total Nitrogen in water	mg/L	3.8	0.7
Phosphate as P in water	mg/L	<0.005	<0.005
TKN in water	mg/L	3.1	0.7
Organic Nitrogen as N	mg/L	1.3	0.5
Electrical Conductivity	μS/cm	19,000	18,000
Total Dissolved Solids (grav)	mg/L	13,000	12,000
Total Phosphorus	mg/L	0.05	0.04

Method ID	Methodology Summary							
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.							
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.							
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.							
	NOTE: Where the EC of the sample is <100μS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-							
	TDS = EC * 0.6							
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.							
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.							
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following water extraction.							
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.							
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.							
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.							
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.							
Inorg-060	Total Phosphorus determined after persulphate digestion followed by colourimetric analysis.							
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).							

Envirolab Reference: 363656

Method ID	Methodology Summary									
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.									
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.									
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestic for Total Chromium using the mineral acids HNO3 and HCI.									
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.									
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.									
Metals-020	Determination of various metals by ICP-AES.									
Metals-022	Determination of various metals by ICP-MS.									
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.									
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.									
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1 (3, 4)). Note Naphthalene is determined from the VOC analysis.									
Org-023	Water samples are analysed directly by purge and trap GC-MS.									
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.									
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.									
	Analysis is undertaken with LC-MS/MS.									
	PFAS results include the sum of branched and linear isomers where applicable.									
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.									
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.									

Envirolab Reference: 363656

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			11/10/2024	2	11/10/2024	14/10/2024		11/10/2024	
Date analysed	-			14/10/2024	2	14/10/2024	14/10/2024		14/10/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	2	68	74	8	97	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	2	70	83	17	97	
Benzene	μg/L	1	Org-023	<1	2	<1	<1	0	97	
Toluene	μg/L	1	Org-023	<1	2	<1	<1	0	101	
Ethylbenzene	μg/L	1	Org-023	<1	2	<1	<1	0	95	
m+p-xylene	μg/L	2	Org-023	<2	2	<2	<2	0	97	
o-xylene	μg/L	1	Org-023	<1	2	<1	<1	0	96	
Naphthalene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	106	2	107	99	8	106	
Surrogate Toluene-d8	%		Org-023	98	2	97	99	2	102	
Surrogate 4-Bromofluorobenzene	%		Org-023	86	2	81	108	29	100	

QUALITY CONTROL: svTRH (C10-C40) in Water					Duplicate			Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Date analysed	-			12/10/2024	[NT]		[NT]	[NT]	12/10/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	113	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	119	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	113	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	93	[NT]		[NT]	[NT]	119	

QUALITY CON	TROL: PFA	S in Water	TRACE Short			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Date analysed	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	86	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	94	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	98	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	91	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	97	
Surrogate ¹³ C ₈ PFOS	%		Org-029	103	[NT]		[NT]	[NT]	97	
Surrogate ¹³ C ₂ PFOA	%		Org-029	111	[NT]		[NT]	[NT]	116	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	95	[NT]		[NT]	[NT]	88	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	72	[NT]		[NT]	[NT]	76	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	75	[NT]		[NT]	[NT]	77	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	139	[NT]		[NT]	[NT]	130	
Extracted ISTD 13 C ₂ 8:2FTS	%		Org-029	127	[NT]		[NT]	[NT]	134	

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Date analysed	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	108	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	93	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	93	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	109	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	108	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	98	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	

QUALITY CONTROL: Cations in water Dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Date analysed	-			11/10/2024	[NT]		[NT]	[NT]	11/10/2024	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	107	

Envirolab Reference: 363656

QUALITY CO	NTROL: Mis	cellaneοι	is Inorganics			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			10/10/2024	2	10/10/2024	10/10/2024		10/10/2024	
Date analysed	-			10/10/2024	2	10/10/2024	10/10/2024		10/10/2024	
рН	pH Units		Inorg-001	[NT]	2	7.7	[NT]		100	
Turbidity	NTU	0.1	Inorg-022	<0.1	2	0.8	0.8	0	102	
Total Suspended Solids	mg/L	5	Inorg-019	<5	2	<5	[NT]		96	
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	2	<0.001	[NT]		108	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	2	0.18	[NT]		93	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	2	0.007	[NT]		104	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	2	<0.005	[NT]		90	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	2	0.008	[NT]		104	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	2	0.7	[NT]		99	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	2	<0.005	[NT]		104	
TKN in water	mg/L	0.1	Inorg-062	<0.1	2	0.7	[NT]		[NT]	
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	2	0.5	[NT]		[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	2	18000	[NT]		98	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	2	12000	[NT]		105	
Total Phosphorus	mg/L	0.01	Inorg-060	<0.01	2	0.04	0.04	0	94	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 363656

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 363656 Page | 17 of 18

Report Comments

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate is not possible to report as the high concentration of analytes in sample 363656-1 have caused interference.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Turbidity: Sample could not be analysed due to the high content of solid matter.

Envirolab Reference: 363656 Page | 18 of 18 R00

customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 361256

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	TBY - WTP
Number of Samples	2 Water
Date samples received	09/09/2024
Date completed instructions received	09/09/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	12/09/2024				
Date of Issue	12/09/2024				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

vTRH(C6-C10)/BTEXN in Water			
Our Reference		361256-1	361256-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		9/09/2024	9/09/2024
Type of sample		Water	Water
Date extracted	-	10/09/2024	10/09/2024
Date analysed	-	11/09/2024	11/09/2024
TRH C ₆ - C ₉	μg/L	<10	64
TRH C ₆ - C ₁₀	μg/L	<10	67
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	67
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	101	100
Surrogate Toluene-d8	%	100	99
Surrogate 4-Bromofluorobenzene	%	96	96

Envirolab Reference: 361256

svTRH (C10-C40) in Water			
Our Reference		361256-1	361256-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		9/09/2024	9/09/2024
Type of sample		Water	Water
Date extracted	-	09/09/2024	09/09/2024
Date analysed	-	12/09/2024	12/09/2024
TRH C ₁₀ - C ₁₄	μg/L	210	<50
TRH C ₁₅ - C ₂₈	μg/L	2,600	<100
TRH C ₂₉ - C ₃₆	μg/L	2,500	<100
Total +ve TRH (C10-C36)	μg/L	5,300	<50
TRH >C ₁₀ - C ₁₆	μg/L	380	<50
TRH >C ₁₆ - C ₃₄	μg/L	4,200	<100
TRH >C ₃₄ - C ₄₀	μg/L	1,900	<100
Total +ve TRH (>C10-C40)	μg/L	6,500	<50
Surrogate o-Terphenyl	%	113	77

PFAS in Water TRACE Short			
Our Reference		361256-1	361256-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		9/09/2024	9/09/2024
Type of sample		Water	Water
Date prepared	-	10/09/2024	10/09/2024
Date analysed	-	10/09/2024	10/09/2024
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0080	0.001
Perfluorooctanesulfonic acid PFOS	μg/L	0.0034	0.0007
Perfluorooctanoic acid PFOA	μg/L	0.0009	<0.0002
6:2 FTS	μg/L	<0.0004	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	101	87
Surrogate ¹³ C ₂ PFOA	%	104	97
Extracted ISTD 18 O ₂ PFHxS	%	56	68
Extracted ISTD 13 C4 PFOS	%	86	71
Extracted ISTD 13 C4 PFOA	%	101	91
Extracted ISTD ¹³ C ₂ 6:2FTS	%	158	124
Extracted ISTD ¹³ C ₂ 8:2FTS	%	105	92
Total Positive PFHxS & PFOS	μg/L	0.011	0.002
Total Positive PFOS & PFOA	μg/L	0.0043	0.0007
Total Positive PFAS	μg/L	0.012	0.002

Envirolab Reference: 361256

All metals in water-dissolved			
Our Reference		361256-1	361256-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		9/09/2024	9/09/2024
Type of sample		Water	Water
Date prepared	-	11/09/2024	11/09/2024
Date analysed	-	11/09/2024	11/09/2024
Copper-Dissolved	μg/L	1	<1
Zinc-Dissolved	μg/L	<1	3
Nickel-Dissolved	μg/L	<1	<1
Iron-Dissolved	μg/L	<10	30
Cadmium-Dissolved	μg/L	<0.1	<0.1
Arsenic-Dissolved	μg/L	15	2
Manganese-Dissolved	μg/L	<5	<5
Cobalt-Dissolved	μg/L	<1	<1
Aluminium-Dissolved	μg/L	<10	<10
Lead-Dissolved	µg/L	<1	<1

Cations in water Dissolved			
Our Reference		361256-1	361256-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		9/09/2024	9/09/2024
Type of sample		Water	Water
Date digested	-	11/09/2024	11/09/2024
Date analysed	-	11/09/2024	11/09/2024
Magnesium - Dissolved	mg/L	62	130

Miscellaneous Inorganics			
Our Reference		361256-1	361256-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		9/09/2024	9/09/2024
Type of sample		Water	Water
Date prepared	-	09/09/2024	09/09/2024
Date analysed	-	09/09/2024	09/09/2024
рН	pH Units	9.3	7.8
Turbidity	NTU	[NT]	0.5
Total Suspended Solids	mg/L	11,000	<5
Hexavalent Chromium, Cr6+ Low Level	mg/L	0.044	0.011
Ammonia as N in water	mg/L	1.9	0.36
Nitrate as N in water	mg/L	0.36	0.05
Nitrite as N in water	mg/L	0.12	0.010
NOx as N in water	mg/L	0.5	0.06
Total Nitrogen in water	mg/L	3.7	1.1
Phosphate as P in water	mg/L	0.01	0.01
TKN in water	mg/L	3.2	1.1
Organic Nitrogen as N	mg/L	1.3	0.7
Electrical Conductivity	μS/cm	13,000	17,000
Total Dissolved Solids (grav)	mg/L	7,900	11,000
Total Phosphorus	mg/L	0.24	0.05

Envirolab Reference: 361256

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Total Phosphorus determined after persulphate digestion followed by colourimetric analysis.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).

Envirolab Reference: 361256

Method ID	Methodology Summary
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCl.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 361256

QUALITY CONTR	ROL: vTRH(0	C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			10/09/2024	2	10/09/2024	11/09/2024		10/09/2024	
Date analysed	-			11/09/2024	2	11/09/2024	12/09/2024		11/09/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	2	64	62	3	99	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	2	67	65	3	99	
Benzene	μg/L	1	Org-023	<1	2	<1	<1	0	99	
Toluene	μg/L	1	Org-023	<1	2	<1	<1	0	100	
Ethylbenzene	μg/L	1	Org-023	<1	2	<1	<1	0	98	
m+p-xylene	μg/L	2	Org-023	<2	2	<2	<2	0	99	
o-xylene	μg/L	1	Org-023	<1	2	<1	<1	0	99	
Naphthalene	μg/L	1	Org-023	<1	2	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	100	2	100	103	3	102	
Surrogate Toluene-d8	%		Org-023	99	2	99	100	1	102	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	2	96	96	0	104	[NT]

Envirolab Reference: 361256

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water		Duplicate					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			09/09/2024	[NT]	[NT]	[NT]	[NT]	09/09/2024	
Date analysed	-			11/09/2024	[NT]	[NT]	[NT]	[NT]	11/09/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	100	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	108	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	100	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]	[NT]	[NT]	[NT]	100	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	108	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]	[NT]	[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	84	[NT]	[NT]	[NT]	[NT]	112	

QUALITY CON	TROL: PFAS	S in Water	TRACE Short			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			10/09/2024	[NT]		[NT]	[NT]	10/09/2024	
Date analysed	-			10/09/2024	[NT]		[NT]	[NT]	10/09/2024	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	104	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	101	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	100	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	102	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	102	
Surrogate ¹³ C ₈ PFOS	%		Org-029	98	[NT]		[NT]	[NT]	96	
Surrogate ¹³ C ₂ PFOA	%		Org-029	99	[NT]		[NT]	[NT]	99	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	77	[NT]		[NT]	[NT]	89	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	73	[NT]		[NT]	[NT]	81	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	78	[NT]		[NT]	[NT]	87	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	71	[NT]		[NT]	[NT]	96	
Extracted ISTD 13 C ₂ 8:2FTS	%		Org-029	85	[NT]		[NT]	[NT]	92	

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date prepared	-			11/09/2024	[NT]		[NT]	[NT]	11/09/2024		
Date analysed	-			11/09/2024	[NT]		[NT]	[NT]	11/09/2024		
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99		
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99		
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97		
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	94		
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95		
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94		
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	96		
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98		
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	93		
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97		

QUALITY CON	ITROL: Cation	ons in wa	ter Dissolved			Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361256-2
Date digested	-			11/09/2024	1	11/09/2024	11/09/2024		11/09/2024	11/09/2024
Date analysed	-			11/09/2024	1	11/09/2024	11/09/2024		11/09/2024	11/09/2024
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	62	61	2	97	102

Envirolab Reference: 361256

QUALITY CO	NTROL: Mis	cellaneοι	ıs Inorganics			Du	plicate		Spike Recovery		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	361256-2	
Date prepared	-			09/09/2024	1	09/09/2024	09/09/2024		09/09/2024	09/09/2024	
Date analysed	-			09/09/2024	1	09/09/2024	09/09/2024		09/09/2024	09/09/2024	
рН	pH Units		Inorg-001	[NT]	1	9.3	9.3	0	100	[NT]	
Turbidity	NTU	0.1	Inorg-022	<0.1	1		[NT]		102	[NT]	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	11000	10000	10	86	[NT]	
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	0.044	0.045	2	101	98	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	1.9	1.8	5	120	107	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.36	0.36	0	107	110	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.12	0.12	0	102	114	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.5	0.5	0	107	110	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	3.7	[NT]		117	[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.01	0.01	0	101	107	
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	3.2	[NT]		[NT]	[NT]	
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	1	1.3	[NT]		[NT]	[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	13000	13000	0	103	[NT]	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	7900	7800	1	93	[NT]	
Total Phosphorus	mg/L	0.01	Inorg-060	<0.01	1	0.24	0.24	0	104	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 361256

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 361256 Page | 17 of 18

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Turbidity: Sample #1 was not analysed due to high solid content.

Envirolab Reference: 361256 Page | 18 of 18 Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

CERTIFICATE OF ANALYSIS 359609

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	TBY - WTP
Number of Samples	2 Water
Date samples received	20/08/2024
Date completed instructions received	20/08/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	21/08/2024	
Date of Issue	21/08/2024	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with ISO	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

vTRH(C6-C10)/BTEXN in Water			
Our Reference		359609-1	359609-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		20/08/2024	20/08/2024
Type of sample		Water	Water
Date extracted	-	20/08/2024	20/08/2024
Date analysed	-	21/08/2024	21/08/2024
TRH C ₆ - C ₉	μg/L	22	70
TRH C ₆ - C ₁₀	μg/L	31	78
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	31	78
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	110	109
Surrogate Toluene-d8	%	102	101
Surrogate 4-Bromofluorobenzene	%	94	96

svTRH (C10-C40) in Water			
Our Reference		359609-1	359609-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		20/08/2024	20/08/2024
Type of sample		Water	Water
Date extracted	-	21/08/2024	21/08/2024
Date analysed	-	21/08/2024	21/08/2024
TRH C ₁₀ - C ₁₄	μg/L	330	<50
TRH C ₁₅ - C ₂₈	μg/L	1,800	<100
TRH C ₂₉ - C ₃₆	μg/L	1,200	<100
Total +ve TRH (C10-C36)	μg/L	3,300	<50
TRH >C ₁₀ - C ₁₆	μg/L	600	<50
TRH >C ₁₆ - C ₃₄	μg/L	2,400	<100
TRH >C ₃₄ - C ₄₀	μg/L	840	<100
Total +ve TRH (>C10-C40)	μg/L	3,800	<50
Surrogate o-Terphenyl	%	83	79

PFAS in Water TRACE Short			
Our Reference		359609-1	359609-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		20/08/2024	20/08/2024
Type of sample		Water	Water
Date prepared	-	21/08/2024	21/08/2024
Date analysed	-	21/08/2024	21/08/2024
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0041	0.001
Perfluorooctanesulfonic acid PFOS	μg/L	0.002	0.0002
Perfluorooctanoic acid PFOA	μg/L	0.0009	0.0002
6:2 FTS	μg/L	<0.0004	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	107	100
Surrogate ¹³ C ₂ PFOA	%	100	98
Extracted ISTD 18 O ₂ PFHxS	%	67	70
Extracted ISTD 13 C4 PFOS	%	56	71
Extracted ISTD 13 C4 PFOA	%	73	80
Extracted ISTD ¹³ C ₂ 6:2FTS	%	122	131
Extracted ISTD ¹³ C ₂ 8:2FTS	%	104	139
Total Positive PFHxS & PFOS	µg/L	0.0058	0.002
Total Positive PFOS & PFOA	μg/L	0.0026	0.0004
Total Positive PFAS	μg/L	0.0067	0.002

Envirolab Reference: 359609

All metals in water-dissolved			
Our Reference		359609-1	359609-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		20/08/2024	20/08/2024
Type of sample		Water	Water
Date prepared	-	21/08/2024	21/08/2024
Date analysed	-	21/08/2024	21/08/2024
Iron-Dissolved	μg/L	10	<10
Copper-Dissolved	μg/L	1	1
Nickel-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	1	2
Cadmium-Dissolved	μg/L	<0.1	<0.1
Aluminium-Dissolved	μg/L	110	100
Manganese-Dissolved	μg/L	<5	<5
Cobalt-Dissolved	μg/L	<1	<1
Arsenic-Dissolved	μg/L	2	2
Lead-Dissolved	μg/L	<1	<1

Cations in water Dissolved			
Our Reference		359609-1	359609-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		20/08/2024	20/08/2024
Type of sample		Water	Water
Date digested	-	21/08/2024	21/08/2024
Date analysed	-	21/08/2024	21/08/2024
Magnesium - Dissolved	mg/L	3	79

Miscellaneous Inorganics			
Our Reference		359609-1	359609-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		20/08/2024	20/08/2024
Type of sample		Water	Water
Date prepared	-	20/08/2024	20/08/2024
Date analysed	-	20/08/2024	20/08/2024
рН	pH Units	10.8	8.1
Turbidity	NTU	NT	0.2
Total Suspended Solids	mg/L	17,000	<5
Hexavalent Chromium, Cr6+ Low Level	mg/L	0.067	0.013
Ammonia as N in water	mg/L	0.99	0.051
Nitrate as N in water	mg/L	0.36	0.096
Nitrite as N in water	mg/L	0.16	0.017
NOx as N in water	mg/L	0.51	0.1
Total Nitrogen in water	mg/L	2.2	0.7
Phosphate as P in water	mg/L	<0.005	<0.005
TKN in water	mg/L	1.7	0.5
Organic Nitrogen as N	mg/L	0.7	0.5
Electrical Conductivity	μS/cm	7,800	8,700
Total Dissolved Solids (grav)	mg/L	5,400	5,700
Total Phosphorus	mg/L	0.05	0.03

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Total Phosphorus determined after persulphate digestion followed by colourimetric analysis.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).

Envirolab Reference: 359609

Method ID	Methodology Summary									
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.									
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.									
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.									
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.									
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.									
Metals-020	Determination of various metals by ICP-AES.									
Metals-022	Determination of various metals by ICP-MS.									
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.									
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.									
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.									
Org-023	Water samples are analysed directly by purge and trap GC-MS.									
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.									
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.									
	Analysis is undertaken with LC-MS/MS.									
	PFAS results include the sum of branched and linear isomers where applicable.									
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.									
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.									

Envirolab Reference: 359609

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			20/08/2024	[NT]		[NT]	[NT]	20/08/2024	
Date analysed	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	107	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	107	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	112	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	107	[NT]		[NT]	[NT]	98	
Surrogate Toluene-d8	%		Org-023	101	[NT]		[NT]	[NT]	94	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	[NT]		[NT]	[NT]	101	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
Date analysed	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	88	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	88	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	78	[NT]		[NT]	[NT]	90	

QUALITY CON	TROL: PFA	S in Water	TRACE Short			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
Date analysed	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	107	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	101	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	103	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	108	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	95	
Surrogate ¹³ C ₈ PFOS	%		Org-029	103	[NT]		[NT]	[NT]	101	
Surrogate ¹³ C ₂ PFOA	%		Org-029	99	[NT]		[NT]	[NT]	97	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	66	[NT]		[NT]	[NT]	59	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	60	[NT]		[NT]	[NT]	60	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	71	[NT]		[NT]	[NT]	63	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	94	[NT]		[NT]	[NT]	79	
Extracted ISTD 13 C ₂ 8:2FTS	%		Org-029	99	[NT]		[NT]	[NT]	99	

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			21/08/2024	2	21/08/2024	21/08/2024		21/08/2024	
Date analysed	-			21/08/2024	2	21/08/2024	21/08/2024		21/08/2024	
Iron-Dissolved	μg/L	10	Metals-022	<10	2	<10	<10	0	104	
Copper-Dissolved	μg/L	1	Metals-022	<1	2	1	<1	0	103	
Nickel-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	104	
Zinc-Dissolved	μg/L	1	Metals-022	<1	2	2	2	0	105	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	2	<0.1	<0.1	0	104	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	2	100	100	0	114	
Manganese-Dissolved	μg/L	5	Metals-022	<5	2	<5	<5	0	104	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	101	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	2	2	2	0	104	
Lead-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	106	

QUALITY CONTROL: Cations in water Dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
Date analysed	-			21/08/2024	[NT]		[NT]	[NT]	21/08/2024	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	95	

Envirolab Reference: 359609

QUALITY CO	NTROL: Mis	cellaneοι	ıs Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	359609-2
Date prepared	-			20/08/2024	1	20/08/2024	20/08/2024		20/08/2024	20/08/2024
Date analysed	-			20/08/2024	1	20/08/2024	20/08/2024		20/08/2024	20/08/2024
рН	pH Units		Inorg-001	[NT]	1	10.8	10.9	1	101	[NT]
Turbidity	NTU	0.1	Inorg-022	<0.1	1	NT	[NT]		98	[NT]
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	17000	[NT]		96	[NT]
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	0.067	[NT]		96	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.99	0.89	11	87	87
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.36	0.35	3	102	101
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.16	0.16	0	98	97
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.51	0.51	0	102	101
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	2.2	[NT]		108	[NT]
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	102	98
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	1.7	[NT]		[NT]	[NT]
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	1	0.7	[NT]		[NT]	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	7800	7800	0	100	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	5400	[NT]		92	[NT]
Total Phosphorus	mg/L	0.01	Inorg-060	<0.01	1	0.05	[NT]		112	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 359609

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 359609 Page | 17 of 18

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

vTRH & BTEXN in Water NEPM - TRH C6-C9/C6-C10 Results are positive (or in part positive) due to the presence of THMs within the sample.

359609-1 Turbidity: Sample could not be analysed due to the high concentration of solid matter.

Envirolab Reference: 359609 Page | 18 of 18 Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 356313

Client Details	
Client	CTP AFJV
Attention	
Address	

Sample Details	
Your Reference	TBY - WTP
Number of Samples	2 Water
Date samples received	11/07/2024
Date completed instructions received	11/07/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	12/07/2024				
Date of Issue	12/07/2024				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

vTRH(C6-C10)/BTEXN in Water			
Our Reference		356313-1	356313-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		11/07/2024	11/07/2024
Type of sample		Water	Water
Date extracted	-	11/07/2024	11/07/2024
Date analysed	-	12/07/2024	12/07/2024
TRH C ₆ - C ₉	μg/L	<10	47
TRH C ₆ - C ₁₀	μg/L	<10	51
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	51
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	117	114
Surrogate Toluene-d8	%	104	104
Surrogate 4-Bromofluorobenzene	%	84	87

svTRH (C10-C40) in Water			
Our Reference		356313-1	356313-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		11/07/2024	11/07/2024
Type of sample		Water	Water
Date extracted	-	11/07/2024	11/07/2024
Date analysed	-	11/07/2024	11/07/2024
TRH C ₁₀ - C ₁₄	μg/L	170	<50
TRH C ₁₅ - C ₂₈	μg/L	1,500	230
TRH C ₂₉ - C ₃₆	μg/L	700	150
Total +ve TRH (C10-C36)	μg/L	2,400	380
TRH >C ₁₀ - C ₁₆	μg/L	360	<50
TRH >C ₁₆ - C ₃₄	μg/L	1,900	340
TRH >C ₃₄ - C ₄₀	μg/L	470	110
Total +ve TRH (>C10-C40)	μg/L	2,700	450
Surrogate o-Terphenyl	%	75	81

PFAS in Water TRACE Short			
Our Reference		356313-1	356313-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		11/07/2024	11/07/2024
Type of sample		Water	Water
Date prepared	-	11/07/2024	11/07/2024
Date analysed	-	11/07/2024	11/07/2024
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0086	0.0005
Perfluorooctanesulfonic acid PFOS	μg/L	0.0058	<0.0002
Perfluorooctanoic acid PFOA	μg/L	0.0031	<0.0002
6:2 FTS	μg/L	<0.0004	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	106	103
Surrogate ¹³ C ₂ PFOA	%	97	98
Extracted ISTD 18 O ₂ PFHxS	%	83	89
Extracted ISTD 13 C4 PFOS	%	73	80
Extracted ISTD 13 C4 PFOA	%	93	107
Extracted ISTD ¹³ C ₂ 6:2FTS	%	157	154
Extracted ISTD ¹³ C ₂ 8:2FTS	%	149	141
Total Positive PFHxS & PFOS	μg/L	0.014	0.0005
Total Positive PFOS & PFOA	μg/L	0.0089	<0.0002
Total Positive PFAS	μg/L	0.018	0.0005

All metals in water-dissolved			
Our Reference		356313-1	356313-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		11/07/2024	11/07/2024
Type of sample		Water	Water
Date prepared	-	12/07/2024	12/07/2024
Date analysed	-	12/07/2024	12/07/2024
Iron-Dissolved	μg/L	20	30
Copper-Dissolved	μg/L	<1	<1
Nickel-Dissolved	μg/L	<1	<1
Zinc-Dissolved	μg/L	2	2
Cadmium-Dissolved	μg/L	<0.1	<0.1
Aluminium-Dissolved	μg/L	<10	10
Manganese-Dissolved	μg/L	19	10
Cobalt-Dissolved	μg/L	<1	<1
Arsenic-Dissolved	μg/L	<1	<1
Lead-Dissolved	μg/L	<1	<1

Cations in water Dissolved			
Our Reference		356313-1	356313-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		11/07/2024	11/07/2024
Type of sample		Water	Water
Date digested	-	12/07/2024	12/07/2024
Date analysed	-	12/07/2024	12/07/2024
Magnesium - Dissolved	mg/L	240	110

Miscellaneous Inorganics			
Our Reference		356313-1	356313-2
Your Reference	UNITS	UNTRD	TRD
Date Sampled		11/07/2024	11/07/2024
Type of sample		Water	Water
Date prepared	-	11/07/2024	11/07/2024
Date analysed	-	11/07/2024	11/07/2024
рН	pH Units	8.6	7.5
Turbidity	NTU	NT	0.4
Total Suspended Solids	mg/L	1,200	10
Hexavalent Chromium, Cr6+ Low Level	mg/L	0.008	0.004
Ammonia as N in water	mg/L	1.4	0.11
Nitrate as N in water	mg/L	0.58	0.20
Nitrite as N in water	mg/L	0.19	0.007
NOx as N in water	mg/L	0.76	0.2
Total Nitrogen in water	mg/L	6.8	0.8
Phosphate as P in water	mg/L	<0.005	<0.005
TKN in water	mg/L	6.1	0.5
Organic Nitrogen as N	mg/L	4.7	0.4
Electrical Conductivity	μS/cm	13,000	9,200
Total Dissolved Solids (grav)	mg/L	7,800	6,100
Total Phosphorus	mg/L	0.30	0.31

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Total Phosphorus determined after persulphate digestion followed by colourimetric analysis.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).

Envirolab Reference: 356313

Method ID	Methodology Summary
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 356313

QUALITY CONTF	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate	cate Spike F		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			11/07/2024	[NT]		[NT]	[NT]	11/07/2024	
Date analysed	-			12/07/2024	[NT]		[NT]	[NT]	12/07/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	111	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	111	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	118	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	109	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	109	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	107	[NT]		[NT]	[NT]	106	
Surrogate Toluene-d8	%		Org-023	105	[NT]		[NT]	[NT]	107	
Surrogate 4-Bromofluorobenzene	%		Org-023	84	[NT]		[NT]	[NT]	104	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water		Duplicate Spike Rec					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			11/07/2024	[NT]		[NT]	[NT]	11/07/2024	
Date analysed	-			11/07/2024	[NT]		[NT]	[NT]	11/07/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	97	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	105	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	97	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	105	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	92	[NT]		[NT]	[NT]	91	

QUALITY CON	TROL: PFA	S in Water	TRACE Short			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			11/07/2024	[NT]		[NT]	[NT]	11/07/2024	
Date analysed	-			11/07/2024	[NT]		[NT]	[NT]	11/07/2024	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	98	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	102	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	93	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	94	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	91	
Surrogate ¹³ C ₈ PFOS	%		Org-029	95	[NT]		[NT]	[NT]	104	
Surrogate ¹³ C ₂ PFOA	%		Org-029	101	[NT]		[NT]	[NT]	101	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	80	[NT]		[NT]	[NT]	83	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	70	[NT]		[NT]	[NT]	70	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	96	[NT]		[NT]	[NT]	94	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	118	[NT]		[NT]	[NT]	132	
Extracted ISTD 13 C ₂ 8:2FTS	%		Org-029	141	[NT]		[NT]	[NT]	126	

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			12/07/2024	1	12/07/2024	12/07/2024		12/07/2024	
Date analysed	-			12/07/2024	1	12/07/2024	12/07/2024		12/07/2024	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	20	20	0	97	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	98	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	97	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	95	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	19	19	0	95	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	98	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	1	0	93	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	101	

QUALITY CON	ITROL: Cation	ons in wa	ter Dissolved		Duplicate Spike Red					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	356313-2
Date digested	-			12/07/2024	1	12/07/2024	12/07/2024		12/07/2024	12/07/2024
Date analysed	-			12/07/2024	1	12/07/2024	12/07/2024		12/07/2024	12/07/2024
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	240	250	4	102	98

Envirolab Reference: 356313

QUALITY CO	NTROL: Mis	cellaneou	ıs Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			11/07/2024	1	11/07/2024	11/07/2024		11/07/2024	
Date analysed	-			11/07/2024	1	11/07/2024	11/07/2024		11/07/2024	
рН	pH Units		Inorg-001	[NT]	1	8.6	[NT]		99	
Turbidity	NTU	0.1	Inorg-022	<0.1	1	NT	[NT]		99	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	1200	1100	9	106	
Hexavalent Chromium, Cr ⁶⁺ Low Level	mg/L	0.001	Inorg-118	<0.001	1	0.008	[NT]		103	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	1.4	[NT]		98	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.58	[NT]		116	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.19	[NT]		110	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.76	[NT]		116	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	6.8	[NT]		86	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	[NT]		109	
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	6.1	[NT]		[NT]	
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	1	4.7	[NT]		[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	13000	[NT]		98	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	7800	8500	9	86	
Total Phosphorus	mg/L	0.01	Inorg-060	<0.01	1	0.30	[NT]		104	

Result Definitions	
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 356313

Quality Control Definitions	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 356313 Page | 17 of 18

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

MISC_INORG:356313-1 Turbidity cannot be done due to high amount of sediments present in the sample.

Envirolab Reference: 356313 Page | 18 of 18 Revision No: R00